container type) describes the substrate water-air relations, with typical levels of 45% to 65% water and 10% to 30% air space with a variety of substrates ( Bilderback et al., 2005 ) using the volume pressure plate extractor ( Milks et al., 1989a ) in 348-cm
An experiment was conducted to determine the rate and frequency of irrigation needed for optimum yield in sweetpotato (Ipomoea batatas (L.)Lam). A line source irrigation system was used to provide continuously increasing amounts of water at each irrigation. The physiological responses of sweetpotato to water application were measured. There was an increase in leaf water potential with increasing rates of irrigation. Leaf diffusive resistance decreased as total water rate increased to 76% of pan evaporation (Epan) and then increased with higher rates of irrigation. Marketable yields increased as total water rate increased to 76% of Epan and then decreased rapidly with higher irrigation rates. Water relations measurements indicated that reduction in yield with higher amounts of water application was due to low soil oxygen content.
were conducted without adequate knowledge of soil moisture content or were conducted in dry soils that imposed drought stress. Thus, it is not known how cold acclimation changes water relations of citrus independent of soil moisture content. Citrus cold
the assumption that under non-stress conditions, genotypic variation affects water relations and WUE i in almond plants. We further assessed the hypothesis that genotypic variation in almond may lead to anatomical differences in mesophyll, which may
potentials ( Liu et al., 2007 ). To optimize irrigation strategies for strawberries, it is important to know how different irrigation strategies influence physiological reactions (i.e., plant–water relations), stomatal conductance ( g s ), and chemical
full and deficit irrigation regimes. Grafted and ungrafted plants were compared in terms of yield, plant growth, fruit quality parameters, leaf gas exchange, water relations, macroelement content in fruits and leaves, and water use efficiency
), indicating that the reduced growth may be an effect of impaired enzymatic activity or water relations in K + -deficient plants irrigated with high EC w water. Potassium concentrations in LMS were below the deficiency level for most of the cultivated plants
). Nonetheless, the increased biomass production under high CO 2 should be advantageous for horticultural plants in that they should attain a marketable size more rapidly. PLANT WATER RELATIONS In addition to the effects of CO 2 on photosynthesis and C
relations. Celette et al. (2005) , working in a nonirrigated vineyard in Languedoc-Roussillon, France, found that soil water content with a tall fescue ( Festuca arundinacea Shreb.) cover crop was higher at a depth of 0.75 m from spring to midsummer, but
Water relations and fruit development were studied for up to 100 days after anthesis for potted plants of Opuntia ficus-indica (L.) Mill. (a prickly pear) that were either well-watered or water-stressed, each plant consisting of a medium-sized cladode bearing two or three fruit. Even though cladodes of water-stressed plants lost up to 50% of their thickness, their fruit continued to gain water and to develop; at ripening such fruit had only 16% less water than fruit of watered plants. Maturation indicated by the decrease in fractional peel content and increases in pulp weight and in pulp soluble sugar content was hastened by water stress, leading to ripening ≈88 days after anthesis for water-stressed plants, which was 10 days earlier than for watered plants. Fruit had a lower stomatal frequency than the cladodes but both exhibited Crassulacean acid metabolism behavior. Transpiration occurred mainly at night, and the daily amount of water transpired per unit fruit surface area decreased with time, especially for fruit of water-stressed plants. This decrease was related to fruit expansion (leading to decreased stomatal frequency) for watered plants and to both fruit expansion and water stress for water-stressed plants. At 75 days after anthesis, daily diameter changes of fruit were correlated with transpiration, contraction occurring at night and expansion during the daytime, and changes were greater for watered plants for which daily transpiration was higher.