Search Results

You are looking at 1 - 10 of 1,180 items for :

  • stem extension x
Clear All

`Red Lady' and `Tainung #1' papaya plants were grown in nursery trays with cells 5.1 cm in diameter. After 10 weeks, mean height of the `Red Lady' plants was 10.1 cm and that of the `Tainung #1' plants was 9.3 cm. Each of five plants per cultivar was planted between two root observation windows, one at 45 cm and the other at 95 cm. Roots reached the 45-cm observation window in 30 days, when mean height of the `Red Lady' plants was 18.7 cm and that of the `Tainung #1' plants was 13.0 cm. Roots reached the 95-cm observation window in 55 days, when mean height of the `Red Lady' plants was 55.4 cm and that of the `Tainung #1' plants was 40.6 cm. Thus, root extension during these initial 55 days was 17 to 18 mm per day for both cultivars, and stem extension during this period was 8.7 mm·d–1 for `Red Lady' and 5.5 mm per day for `Tainung #1'. Root extension declined for both cultivars to ≈12 mm·d–1 by the initial bloom period, then further declined to ≈4 mm·d–1 during and after the initial fruit set stage. Stem extension increased to about 19 mm·d–1 after the plants were established and remained at this rate until well into the stage of heavy fruit set and growth, when it declined to about 8 mm·d–1. The amount of fruit set influenced root characteristics more than cultivar.

Free access

-applied ethephon. The effect of liming on ethylene release suggests a possible experimental approach whereby rate of ethylene generation may be modified by substrate pH. Despite the potential benefits of ethephon drenches in terms of regulation of stem extension

Free access

Intermediate-day plants (IDP) flower most rapidly and completely under intermediate photoperiods (e.g., 12 to 14 h of light), but few species have been identified and their flowering responses are not well understood. A variety of experiments was conducted to determine how light controls flowering and stem extension of Echinacea purpurea `Bravado' and `Magnus'. Both cultivars flowered most completely (79%) and rapidly and at the youngest physiological age under intermediate photoperiods of 13 to 15 h. Few (14%) plants flowered under 10- or 24-h photoperiods, indicating E. purpurea is a qualitative IDP. Plants were also induced to flower when 15-h dark periods were interrupted with as few as 7.5 min of low-intensity lighting (night interruption, NI). Flowering was progressively earlier as the NI increased to 1 h, but was delayed when the NI was extended to 4 h. Stem length increased by 230% as the photoperiod or NI duration increased, until plants received a saturating duration (at 14 h or 1 h, respectively). At macroscopic visible bud, transferring plants from long days to short days reduced stem extension by up to 30%. Flowering was inhibited when the entire photoperiod was deficient in blue or red light and was promoted in a far-red deficient environment, suggesting that phytochrome and cryptochrome control flowering of E. purpurea. Because of our results, we propose the flowering behavior of IDP such as E. purpurea is composed of two mechanisms: a dark-dependent response in which flowering is promoted by a short night, and a light-dependent response in which flowering is inhibited by a long day.

Free access

Environments with a low red (R, 600 to 700 nm) to far-red (FR, 700 to 800 nm) ratio (e.g., with high plant density) promote stem elongation, and a high R: FR suppresses it. While FR light promotes stem extension, it is also required for rapid, uniform flowering of many long-day plants. We investigated how a new FR filter [creating a FR-deficient (FRd) environment] influenced plug growth and subsequent flowering of pansy (Viola ×wittrockiana `Crystal Bowl Yellow'), petunia (Petunia ×hybrida `Carpet Pink'), impatiens (Impatiens wallerana `Accent Rose'), snapdragon (Antirrhinum majus `Liberty Scarlet'), and tomato (Solanum lycopersicon `Beefmaster'). One-week-old seedlings were placed under three filter treatments with 16-h photoperiods: the FRd filter, a neutral-density filter (N) that transmitted a similar PPF, and transferring plugs from the N to the FRd filter when leaves of each species began to touch (7 to 11 days later). The predicted phytochrome photoequilibria under the FRd and N filters was 0.80 and 0.72, respectively. After 25 to 35 days at 20 °C, node number and stem (or petiole for pansy) length were collected. Twenty plants of each species and filter treatment were then transferred to 4-inch pots and grown under natural photoperiods (14 to 15 h) at 20 °C until flowering. Compared to plants continually under the N filter, stem length under the FRd filter was significantly reduced in impatiens (by 11%), pansy (by 18%), petunia (by 34%), snapdragon (by 5%), and tomato (by 24%). Flowering of plants from plugs under the FRd filter was delayed by 2 to 3 days for snapdragon, petunia, and pansy. Filter treatment of plugs had no significant effect on flower number or plant height at flower.

Free access

paclobutrazol and uniconazole liner dips on stem extension measured 28 d after application in five bedding plant species. Mean separation within each species and chemical by Tukey's honestly significant difference test at P ≤ 0.05. Regression lines were

Full access

stem extension of long-day plants J. Amer. Soc. Hort. Sci. 126 275 282 Sager, J.C. Smith, W.O. Edwards, L.L. Cyr, K.L. 1988 Use of spectral data to determine photosynthetic efficiency and phytochrome photoequilibria Trans. Amer. Soc. Agr. Eng. 31 1882

Free access

For many long-day plants (LDP), adding far red light (FR, 700 to 800 nm) to red light (R, 600 to 700 nm) to extend the day or interrupt the night promotes extension growth and flowering. Blue light (B, 400 to 500 nm) independently inhibits extension growth, but its effect on flowering is not well described. Here, we determined how R-, FR-, or B-deficient (Rd, FRd, or Bd, respectively) photoperiods influenced stem extension and flowering in five LDP species: Campanula carpatica Jacq., Coreopsi ×grandiflora Hogg ex Sweet, Lobelia ×speciosa Sweet, Pisum sativum L., and Viola ×wittrockiana Gams. Plants were exposed to Rd, FRd, Bd, or normal (control) 16-hour photoperiods, each of which had a similar photosynthetic (400 to 700 nm) photon flux. Compared with that of the control, the Rd environment promoted extension growth in C. carpatica (by 65%), C. ×grandiflora (by 26%), P. sativum (by 23%), and V. ×wittrockiana (by 31%). The FRd environment suppressed extension growth in C. ×grandiflora (by 21%), P. sativum (by 17%), and V. ×wittrockiana (by 14%). Independent of the R: FR ratio, the Bd environment promoted stem extension (by 10% to 100%) in all species, but there was little or no effect on flowering percentage and time to flower. Extension growth was generally linearly related to the incident wide band (100 nm) R: FR ratio or estimated phytochrome photoequilibrium except when B light was specifically reduced. A high R: FR ratio (i.e., under the FRd filter) delayed flower initiation (but not development) in C. carpatica and C.×grandiflora and inhibited flower development (but not initiation) in Vwittrockiana. Therefore, B light and the R: FR ratio independently regulate extension growth by varying magnitudes in LDP, and in some species, an FRd environment can suppress flower initiation or development.

Free access

For many plants, light quality has a pronounced effect on plant morphology; light with a low red (R, 600 to 700 nm) to far-red (FR, 700 to 800 nm) ratio promotes stem elongation and a high R: FR, or blue light (B, 400 to 500 nm), suppresses it. In addition, FR light is required for rapid flowering in some species, particularly for long-day plants. Our objective was to quantify how flexible spectral filters, which selectively reduce FR, B, or R, influence plant height and flowering of the quantitative long-day plants Pisum sativum L. `Utrillo' and Viola ×wittrockiana Gams. `Crystal Bowl Yellow'. Plants were grown at 20 °C with reduced FR, B, or R environments or with a neutral density control (C) filter. Calculated phytochrome photoequilebria were 0.78, 0.73, 0.71, or 0.46 for the altered FR, B, C, or R environments, respectively. All filter treatments transmitted a similar photosynthetic photon flux. Sixteen-hour photoperiods were created with natural daylight supplemented with high-pressure sodium lamps positioned above filters. Viola grown under the FR filter never reached 100% flowering within 8 weeks, and visible bud appearance was delayed by at least 17 days compared to all other filters. The R and B filters enhanced peduncle length by at least 25% compared to the C or FR filters. In Pisum, average internode length was 2.2, 2.9, 3.4, and 3.7 cm under the FR, C, B, and R filters, respectively, all statistically different. Fresh and dry shoot weights were similar under the C and FR filters but were at least 35% greater under the B filter and 35% lower under the R filter.

Free access

. Ambient wind speed was recorded with a Model 014 MET-ONE Wind Speed Sensor (Campbell Scientific, Inc., Logan, UT). Stem height, stem base diameter, root tip density, and root extension were measured weekly. Root tip density was determined by counting the

Free access

Respiration and temperature measurements. Stem temperature and respiration were measured on the extension shoots of 4-year-old persian walnut trees (‘Chandler’ on Juglans hindsii × J. regia ‘Paradox’ hybrid rootstock) grown in an orchard at the University

Free access