Search Results

You are looking at 1 - 10 of 164 items for :

  • sports field x
Clear All
Free access

Chase M. Straw, Rebecca A. Grubbs, Kevin A. Tucker and Gerald M. Henry

Performance testing of natural turfgrass sports fields requires sampling to obtain information on surface properties (e.g., soil moisture, soil compaction, surface hardness, and turfgrass vigor) ( Carrow et al., 2010 ; McAuliffe, 2008 ). Several

Full access

Jennifer DeWolfe, T.M. Waliczek and J.M. Zajicek

/landscaping at track and field sites, anxiety, and sports performance. Athlete performance comparisons. Performance was ranked with 1 being entered for the worst performance, 2 being entered for the third best performance, 3 being entered for the second best

Free access

Keisha Rose-Harvey, Kevin J. McInnes and James C. Thomas

Golf putting greens and sports fields that are designed to use a geotextile to retain a sand-based root zone mixture atop a drainage layer are an alternative to the popular design recommended by the U.S. Golf Association (USGA) where the root zone

Free access

Paraskevi A. Londra, Maria Psychoyou and John D. Valiantzas

container-grown plants, in roof gardens, and sports fields. Urea–formaldehyde resin foam and its effect on plant growth has been the subject of study as an amendment for soils and organic substrates for several researchers ( Chan and Joyce, 2007 ; Mooney

Full access

Luisa Martelloni, Lisa Caturegli, Christian Frasconi, Monica Gaetani, Nicola Grossi, Simone Magni, Andrea Peruzzi, Michel Pirchio, Michele Raffaelli, Marco Volterrani and Marco Fontanelli

European Union, which requires member states to minimize or prohibit chemical herbicides in public parks and gardens, sports and recreational areas, school gardens and children’s playgrounds, as well as in the close vicinity of healthcare facilities

Free access

John C. Stier, Eric J. Koeritz and Mark Garrison

Sports fields are often constructed under short time lines. In the U.S. school system, football seasons last from mid-August to mid-November. Many consultants and contractors like to have 9 to 12 months between seeding a C 3 turfgrass-based field

Full access

Manuel Chavarria, Benjamin Wherley, James Thomas, Ambika Chandra and Paul Raymer

including golf courses, parks, and athletic fields ( Devitt et al., 2004 ). According to the Golf Course Superintendents Association of America’s Environmental Institute for Golf Survey ( Golf Course Superintendents Association of America, 2015 ), recycled

Full access

Grant J. Klein and Robert L. Green

Turfgrass management best management practices (BMPs) encompass a wide variety of activities, including fertilization, irrigation, mowing, pest control, and soil management. Little attention is given to determining just how effective information regarding BMPs is being assimilated and used by professional turfgrass managers. The objectives of this study were to assess the current perception and implementation of selected turfgrass BMPs and to determine whether or not those perceptions and implementations differed 1) between turfgrass advisors and managers and 2) between general and sports turfgrass managers. Professionals from the turfgrass industry, with an average of 13 years of experience and largely comprised of decision-makers (88%), were surveyed at the University of California, Riverside, Turfgrass Research Conference and Field Day in Fall 1998 and 1999. Turfgrass managers, especially sports turfgrass managers, were found to be the most committed to implementing the BMPs in the survey. Overall, survey respondents considered BMPs to be important and not highly difficult to implement. Limitations to the adoption of BMPs were a lack of financial backing, employee education, and necessary time—all of which could be remedied with a sufficient commitment of resources by the turfgrass industry.

Free access

John L. Cisar, George H. Snyder and Karen E. Williams

For only the second time, the United States will host The International Turfgrass Society's (ITS) International Turfgrass Research Conference (ITRC). The VII ITRC will be held July 18-24, 1993 at The Breakers in Palm Beach, FL. Since its inception, the ITS has been devoted to addressing problems that effect turfgrass and improving the standards of turfgrass science through international communication. The Conference will offer two symposia entitled “Pesticide and Nutrient Fate in Turfgrass Systems” and “Quantification of Surface Characteristics of Sports Fields”. Additionally plenary and volunteered oral and poster presentations on all topics of turfgrass science and related horticultural landscape management tours of the local horticultural industries will be offered. Volunteered papers will be published in a proceedings as either original research papers or as technical papers. Papers submitted as original research will undergo refereed peer review prior to acceptance. See poster for further details or contact authors at above address (phone: 305-475-8990).

Free access

Yiwei Jiang, Robert N. Carrow and Ronny R. Duncan

Turfgrasses are often exposed to different shade environments in conjunction with traffic stresses (wear and/or compaction) in athletic fields within stadiums. The objective of this study was to assess the effects of morning shade (AMS) and afternoon shade (PMS) alone and in combination with wear and wear plus soil compaction on `Sea Isle 1 seashore paspalum (Paspalum vaginatum Swartz). The study was conducted using two consecutive field trials under sports field conditions from 9 July to 10 Sept. 2001 at the Univ. of Georgia Experiment Station at Griffin. “T” shaped structures constructed of plywood on the sports field were used to provide §90% morning and afternoon shade, respectively, and were in place for 1 year prior to data accumulation. A wear device and a studded roller device simulated turfgrass wear (WD) and wear plus soil compaction (WSC), respectively, to the shaded plots. Only minor differences in turf color, density, or canopy spectral reflectance were found between AMS and PMS under no-traffic treatments in both trials. Grasses under WD generally recovered faster than those exposed to WSC across all light levels, including full sunlight (FL), AMS, and PMS. AMS combined with WD treatment had an average 9% higher rating of color, 11% higher density, and 28% less tissue injury than that of PMS with WD at 7 days after traffic treatment (DAT). Compared to PMS with WSC treatment at 7 DAT, AMS with WSC had 12% higher rating of color, 9% higher density, and 4% less tissue injury. AMS with WD treatment exhibited 11% higher normalized difference vegetation index (NDVI), 4% higher canopy water band index (CWBI), and 13% lower stress index than that of PMS with WD at 7 DAT. AMS with WSC, relative to PMS with WSC, demonstrated 8% higher NDVI, 3% higher CWBI, and 8% lower stress index at 7 DAT. Re sults indicated that AMS (i.e., afternoon sunlight) had less detrimental influences than PMS (i.e., morning sunlight) on turfgrass performance after it was subjected to wear stress or wear plus soil compaction.