Search Results

You are looking at 1 - 10 of 591 items for :

  • soilless media x
  • All content x
Clear All
Full access

Mary A. Rogers

( Tyson et al., 2011 ). Other CEA systems such as vertical farms and passive solar heated greenhouses ( Fig. 1 ) use a hydroponic or soilless-media-containerized system, where regular applications of nutrients from external sources are required to maintain

Full access

D.D. Treadwell, G.J. Hochmuth, R.C. Hochmuth, E.H. Simonne, S.A. Sargent, L.L. Davis, W.L. Laughlin, and A. Berry

drain. The troughs were filled to a depth of 6 inches with a commercially available soilless media approved for organic systems (Fafard no. 30; Conrad Fafard, Anderson, SC). The media was composed of 45% peatmoss, 25% pine bark, 15% perlite, and 15

Free access

Rose A. Ogutu, Kimberly A. Williams, and Gary M. Pierzynski

Small volumes (2% to 20%) of a variety of calcined clay-type products are being used as components of soilless root media because of their potential to increase nutrient retention, air space, water retention, and bulk density of mixes used for

Free access

George C. Elliott

Water retention was measured in soilless potting media irrigated by capillary mat, flood and drain, drip or overhead sprinkler. Media were amended with wetting agent or hydrophilic polymeric gel. Pots 12 cm high with a volume of 465 cm3 were loose-filled to the top with media. Potted media were wetted overhead with 120 ml water, then pots were randomly assigned to irrigation treatments. Capillary mat irrigation was continuous; other irrigation treatments were applied daily. Water retention was measured by weighing. Irrigation was continued until no further retention was measured. Water retention was significantly affected by irrigation method and medium amendments. Irrigation method followed the order overhead >= drip > flood and drain >= mat. Hydrophilic gel increased water retention, but in contrast to previous results, wetting agent did not, nor was any interaction of gel and wetting agent observed. Retention of water at container capacity, measured in situ at the end of each experiment, was significantly larger than actual retention.

Free access

George C. Elliott

Water retention was measured in soilless potting media irrigated by capillary mat, flood and drain, drip or overhead sprinkler. Media were amended with wetting agent or hydrophilic polymeric gel. Pots 12 cm high with a volume of 465 cm3 were loose-filled to the top with media. Potted media were wetted overhead with 120 ml water, then pots were randomly assigned to irrigation treatments. Capillary mat irrigation was continuous; other irrigation treatments were applied daily. Water retention was measured by weighing. Irrigation was continued until no further retention was measured. Water retention was significantly affected by irrigation method and medium amendments. Irrigation method followed the order overhead >= drip > flood and drain >= mat. Hydrophilic gel increased water retention, but in contrast to previous results, wetting agent did not, nor was any interaction of gel and wetting agent observed. Retention of water at container capacity, measured in situ at the end of each experiment, was significantly larger than actual retention.

Free access

Matthew D. Taylor, Rachel Kreis, and Lidia Rejtö

substrate HortScience 45 643 649 Bugbee, G.J. 1996 Growth of rhododendron , rudbeckia and thujia and the leaching of nitrates as affected by the pH of potting media amended with biosolids compost Compost Sci. Util. 4 53 59 Bugbee, G. 2002 Growth of

Free access

Harvey J. Lang and George C. Elliott

Autotrophic nitrifying organisms were enumerated in soilless potting media using the most probable number (MPN) technique. Populations of NH4 + and NO2 - oxidizing organisms varied widely between two soilless media—Metro-Mix 220 and 350. Estimates for NH4 + oxidizing organisms ranged from 0.7 to 7.8 × 105 organisms/cm3, while NO2 - oxidizers ranged from 1.3 to 9.5 × 105 organisms/cm3. Population numbers were similar to those typically reported in soils. There was a significant effect of medium type, NH4 + N : NO3 - N fertilizer ratio, and planting on MPN counts of both groups of organisms, with significant interaction between several of the factors. Estimates of NH4 + oxidizers were not linearly correlated with NH4 + oxidizing activity, implying low counting efficiency, heterotrophic nitrification, or rate-limiting substrate NH4 + level. In a separate study, a soilless potting medium was inoculated with pure cultures of either Nitrosomonas europaea or Nitrobacter agilis. Rates of NH4 + and NO2 - oxidation increased, respectively, as inoculum volume increased. Inoculation with nitrifying bacteria may help in the overall management of N in the rhizosphere and be feasible alternatives for the prevention of either NH4 + or NO2 - phytotoxicity with fertilizers containing urea or NH4 +.

Free access

Fahed A. Al-Mana and Tarik M. El-Kiey

Production of five commercial cut flowers in different culture media, namelyI nutrient film technique (NFT), soilless media (perlite and an equal mix of perlite and peatmoss), and soil mix (2 sand: 1 loam by volume), was investigated in controlled fiberglass-house. Two rose varieties (Rosa hybrida var. Baccara and Madina); carnation (Dianthus caryophyllus var. William Sim); Chrysanthemum morifolium var. Delta, and Dahlia hybrida var. variabilis were used. Plants were watered as they needed by the same nutrient solution used for NFT.

Generally, growth and yield of Baccara and Madina roses, Chrysanthemum and Dhalia plants were superior in NFT than in the other media. On the contrary, the growth and yield of carnation plants were significantly greater in conventional soil or perlite and peatmoss mix than in NFT or perlite.

Flower crops grown in NFT generally reached harvest stage 5-10 days earlier than those grown in the other media except carnation plants. There were variations in the accumulation of N, P, K mg, ca, and Fe in plant leaves among the various culture media.

Full access

Bruce R. Roberts, Henry F. Decker, Lindsey M. Ganahl, and Elizabeth Yarmark

Two biosolid-containing waste media [composted sewage sludge (Com-Til) and incinerated biosolids (flume sand)] were evaluated as soilless media for growing `Crenshaw', `Penncross', and `ProCup' creeping bentgrass sod (Agrostis palustris). The media were combined with sand and either sphagnum peat or a commercial growing mix (Metromix) and leached with 5.1 fl oz (150 mL) tap water either zero, one or three times before seeding. Leaching with tap water to remove soluble salts had no beneficial effect on germination or dry mass accumulation. Flume sand was not a particularly good rootzone component for growing creeping bentgrass sod; however, a sieved [0.08-inch (2-mm)] medium consisting of sand, Com-Til and Metromix (8:1:1, by weight) seeded with `ProCup' creeping bentgrass at 2 lb/1000 ft2 (9.8 g·m-2) and grown over 4-mil (0.004-inch, 0.10-mm) plastic in 3.5 × 7.5 × 2-inch deep (9 × 19 × 5-cm) trays produced good sod in about 6 weeks.

Free access

George C. Elliott and Harvey J. Lang

Fungicides were applied at label rates to two commercial soilless potting media in which Iris siberica L. crowns had been potted and were subsequently grown under greenhouse conditions. Effects of fungicides on urea hydrolysis were inconsistent and generally insignificant. Ammonium oxidation was inhibited to varying degrees by Truban, Benlate, Banol, and Subdue. In a subsequent experiment, the same fungicides were added to cropped samples of the same media in vitro, followed 12 hours later by a solution containing urea and ammonium. Urea hydrolysis was essentially unaffected by fungicide treatments. Subsequent oxidation of ammonium was inhibited by Truban and Banol only in one medium. Transient accumulation of nitrite was inhibited by Truban but stimulated by Benlate in both media. When added to pure cultures of Nitrosomonas europea and Nitrobacter agilis, Truban completely inhibited oxidation of ammonium and nitrite. Benlate partially inhibited oxidation of ammonium and nitrite, while Subdue and Banal partially inhibited oxidation of ammonium but not nitrite. Chemical names used: [Methyl 1-(butylcarbamoyl)-2-benzimidazolecarbamate] (benomyl); N- (2,6-dimethylphenyl) -N- (methoxyacetyl)alanine methyl ester (metalaxyl); [2-chloro-6-(trichloromethyl)pyridine (nitrapyrin); 5-Ethoxy-3-(trichloromethyl)-1,2,4-thiadiazole (ethazol); Propyl[3-(dimethylamino)propyl]carbamate monohydrochloride (propamocarb).