Search Results

You are looking at 1 - 10 of 5,097 items for :

  • soil testing x
Clear All

Soil testing is an important component of a plant nutrient management program and has been standard practice for growers to aid in adjustment of fertilizer applications ( Reisenauer, 1978 ). Soil testing is performed not only to improve plant growth

Full access

1 Extension Specialist in Soil Fertility. 2 County Agricultural Agent. 3 Extension Specialist in Pest Management. 4 Extension Specialist Emeritus in Soils and Crops. The research reported in this publication was supported by the New Jersey

Free access

Soil and tissue standards and procedures have not been developed for plug seedlings. Turn-around time for foliar analysis is often adversely long for timely crop corrections. Visual assessment occurs after damage has occurred. Many plug growers have tried but abandoned soil testing due to erratic results. Of the three monitoring systems, soil testing offers the best potential, but can it be effectively refined for plugs? Petunias were grown in 288-plug trays under six fertilizer regimes. Fertilization or waterings were applied at 9:00 am, and 1 hour later, soil solutions were squeezed out and analyzed. Soil levels after fertilization and watering were too variable to inscribe a curve, while levels after fertilization formed a curve consistent with growth of the seedlings. Twice, soil samples were taken 1, 4, 8, and 24 hours after a fertilizer application. Some soil solution concentrations 1 and 4 hours after fertilization were 51 and 36 ppm for NH4-N, 46 and 32 ppm for PO4-P, and 147 and 84 ppm for NO3-N, respectively. Soil testing can be used for plug production, but samples must be taken after a fertilizer application and at a specified length after the application.

Free access

The presidedress soil nitrate test (PSNT) is an in-season soil test that evaluates the N supplying capacity of soil before side dressing to adjust N application rates. Increasing acceptance of this soil test among field corn growers in New Jersey has shown it to be an effective practice. Nitrogen application rates were reduced by an average of 45 kg-1 ha without loss of crop yield. Field calibration research to extend use of the PSNT to sweet corn has the potential to improve N fertilizer recommendations for this crop. A critical concentration of 25 mg kg-1 NO3-N in the surface 30 cm of soil is generally considered adequate for field corn. Certain crop features of sweet corn (earlier harvest, smaller plant size and population) suggested that the critical NO2-N level might be lower than for field corn while market quality suggested that it might be a higher value. Results from 40 sweet corn field calibration sites in New Jersey indicate that the PSNT critical soil NO3-N concentration may be greater for sweet corn than field corn. A preliminary critical level of 30 mg kg-1 NO3-N in the surface 30 cm of soil is suggested for use of the PSNT on sweet corn. Further research is being conducted to improve sidedress N recommendations based on the PSNT.

Free access

1 Extension Specialist in Soil Fertility. To whom reprint requests should be addressed. E-mail address: heckman@aesop.rutgers.edu . 2 Extension Specialist in Soil Fertility. 3 Professor of Soil and Environmental Chemistry. 4 Associate Professor. 5

Free access
Author:

In-season soil nitrate testing is most useful when there is reason to believe, based on field history, that N availability may be adequate. These reasons may include soil organic matter content, applied manure, compost, legumes in the rotation, or residual N fertilizer. Soil nitrate testing is not helpful when crops are grown on sandy, low organic matter content soils that are known from experience to be N deficient. Soil nitrate testing is useful for annual crops such as vegetables or corn for which supplemental N fertilization is a concern. Soil nitrate tests must be performed at critical crop growth stages, and the results must be obtained rapidly to make important decisions about the need for N fertilization. Soil nitrate-N (NO3-N) concentrations in the range of 25 to 30 mg·kg-1 (ppm) indicate sufficiency for most crops, but N fertilizer practice should be adjusted based on local extension recommendations.

Full access
Authors: and

Abstract

Plants of Chrysanthemum morifolium Ramat. grown on a constant fertilization program were analyzed for elemental content, and the growing mix was analyzed by 3 different soil test methods. Optimum values for the nutrients reported by each of the soil tests were determined by using plant uptake data.

Open Access

Recent changes in soil testing methodology, the important role of P fertilization in early establishment and soil coverage, and new restrictions on P applications to turf suggest a need for soil test calibration research on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb), and perennial ryegrass (Lolium perenne L.). Greenhouse and field studies were conducted for 42 days to examine the relationship between soil test P levels and P needs for rapid grass establishment using 23 NJ soils with a Mehlich-3 extractable P ranging from 6 to 1238 mg·kg–1. Soil tests (Mehlich-1, Mehlich-3, and Bray-1) for extractable P were performed by inductively coupled plasma–atomic emission spectroscopy (ICP). Mehlich-3 extractable P and Al were measured to evaluate the ratio of P to Al as a predictor of need for P fertilizer. Kentucky bluegrass establishment was more sensitive to low soil P availability than tall fescue or perennial ryegrass. Soil test extractants Mehlich-1, Bray-1, or Mehlich-3 were each effective predictors of need for P fertilization. The ratio of P to Al (Mehlich-3 P/Al %) was a better predictor of tall fescue and perennial ryegrass establishment response to P fertilization than soil test P alone. The Mehlich-1, Bray-1, and Mehlich-3 soil test P critical levels for clipping yield response were in the range of 170 to 280 mg·kg–1, depending on the soil test extractant, for tall fescue and perennial ryegrass. The Mehlich-3 P/Al (%) critical level was 42% for tall fescue and 33% for perennial ryegrass. Soil test critical levels, based on estimates from clipping yield data, could not be determined for Kentucky bluegrass using the soils in this study. Soil testing for P has the potential to aid in protection of water quality by helping to identify sites where P fertilization can accelerate grass establishment and thereby prevent soil erosion, and by identifying sites that do not need P fertilization, thereby preventing further P enrichment of soil and runoff. Because different grass species have varying critical P levels for establishment, both soil test P and the species should be incorporated into the decision-making process regarding P fertilization.

Free access

The utility of presidedress soil nitrate testing (PSNT) in irrigated lettuce (Lactuca sativa L.) and celery (Apium graveolens L.) production was evaluated in 15 commercial fields in California from 1996 to 1997. Fields were selected in which soil NO3-N (5- to 30-cm depth) was >20 mg·kg–1 at the time the cooperating grower made the first sidedress N application. The grower's N regime was compared with reduced N treatments established by reducing or eliminating one or more sidedress applications. All fields were sprinkler and/or furrow irrigated, with minimal in-season precipitation. Reductions in seasonal N application averaging 143 and 209 kg·ha–1 N in lettuce and celery trials, respectively, had no effect on marketable yield in any field. Crop biomass N at harvest in the lowest N treatment in each field averaged 94% (lettuce) and 88% (celery) of that in plots receiving the full grower N program. Based on controlled-environment aerobic incubation of soil from 30 fields in long-term vegetable rotations, in-season N mineralization averaged 1% to 2% of soil organic N. A soil NO3-N “quick test” procedure utilizing a volumetric extraction of field-moist soil and measurement by nitrate-sensitive colorimetric test strips was evaluated and proved to be a practical on-farm method to estimate soil NO3-N concentration. Lettuce midrib NO3-N concentration at cupping stage was poorly correlated with current soil NO3-N level. We conclude that PSNT can reliably identify fields in which sidedress N application can be delayed or eliminated without affecting crop performance.

Free access

Nitrogen rates (using urea) of 22, 67 and 135 kg/ha were applied to mature mulched and unmulched highbush blueberries over a 5 year period. Soil samples were taken each year at budbreak (prior to fertilization) and post-harvest at the suggested time of foliar sampling (approx. Aug.1) to determine N rate effects within and among years. Data analysis revealed that the most common soil test variables affected by N rate and date of sampling were pH, electrical conductivity (EC) and nitrate. For unmulched plants, a significant reduction in soil pH was found each year between budbreak and Aug. 1 for the 67 and 135 kg/ha rates, but not usually for the 22 kg/ha rate. For mulched plants, pH reduction within N rate among sample dates was usually not significant. Overall soil pH reduction was greatest for the 135 kg/ha rate over the 5 years, and the pH reduction for the 67 kg/ha rate was similar to the 135 kg/ha rate for the unmulched plants. For mulched plants, 22 and 67 kg/ha rates had a similar trend of only a slight pH reduction over the 5 years. EC and nitrate trends were very similar, with the highest levels of each on the unmulched plants.

Free access