Search Results

You are looking at 1 - 10 of 1,610 items for :

  • seedling enhancement x
  • All content x
Clear All
Free access

Masoume Amirkhani, Anil N. Netravali, Wencheng Huang, and Alan G. Taylor

Several techniques have been used to facilitate sowing, and to improve seedling establishment and growth under a range of environmental conditions. These techniques, generally described as seed enhancements, are performed to seeds before sowing

Free access

James H. Keithly, Daniel P. Jones, and Henry Yokoyama

The growth-enhancing property of DCPTA was tested on transplanted seedlings of Brassolaeliocattleya × Hort. (Blc. Bryce Canyon × Lc. Pirate King), Dendrobium × Blume. Hickham Deb, Epidendrum radicans Pav. ex Lindl., Lueliocattleya × Rolfe Prism Palette `The Clown', and Phalaenopsis × Blume. [Pink Zebra × (Jutta Brungor × Music)]. After 3 to 6 months of greenhouse growth, plants treated with 30 μm DCPTA produced a 2- to 3-fold increase in root growth compared to the controls. Shoot growth, root: shoot ratio, and the survival of DCPTA-treated plants were increased significantly when compared with controls. Chemical name used: 2-(3,4-dichlorophenoxy)triethylamine (DCPTA).

Free access

Fred T. Davies Jr., Sharon A. Duray, Sein Hla Bo, and Lop Phavaphutanon

The Neem tree is of ornamental, revegetation, biomass and medicinal value. The compound azadirachtin, which is derived from Neem seeds, is commercially used for insecticidal properties. In a 2×2 factorial experiment, Neem seedlings were either colonized with the mycorrhizal fungi Glomus intraradices or noninoculated and fertilized with full strength Long Ashton Mineral Solution at 11 or 22 ppm P. Mycorrhizal and P main effects were highly significant (p-value<0.001) with all growth parameters except R:S ratio. Mycorrhizal plants had greater leaf number, leaf area, leaf dry weight, shoot and root dry weight than noncolonized seedlings. The higher P (22 ppm) level plants had superior growth compared with low P plants. Leaf area and leaf dry weight were similar in mycorrhizal/low P plants and nonmycorrhizal/high P plants. These results suggest that mycorrhizal growth enhancement has important implications for Neem trees which are found in agriculturally poor soils in hot and arid regions.

Free access

Hiromi Toida, Katsumi Ohyama, Yoshitaka Omura, and Toyoki Kozai

The light and dark periods can be easily controlled by the use of artificial lighting. To understand the effects of alternation of light and dark periods on plant growth and development, we studied the growth and development of tomato (`Momotaro') seedlings under nonperiodic alternation of light and dark periods. Tomato seedlings grown under two nonperiodic alternation treatments of NF (NF-1 and NF-2) were compared with seedlings grown under a periodic alternation treatment (P treatment) with 12-hour light and dark periods. In all treatments, photosynthetic photon flux (PPF) during the light period was maintained at 280 μmol·m-2·s-1; the sum of each light period and the following dark period was 24 hours; and each of the integrated light and dark periods was 132 hours during 11 days of the experiment. In NF-1, the initial light and dark periods were 7 and 17 hours, respectively, and the light period was extended 1 hour per day, while in NF-2, they were initially 17 and 7 hours, respectively, and the light period was shortened 1 hour per day. At the end of the experiment, dry weight per seedling was greater and flower-bud initiation of the first flower truss was earlier in NF-1 than in NF-2 and P, even though the integrated PPF during the experiment was the same in all treatments. These results demonstrate that growth and development of tomato seedlings can be enhanced without any increase in electric energy consumption for lighting by gradually extending the light period or shortening the dark period.

Free access

Kimberly A. Pickens, James M. Affolter, Hazel Y. Wetzstein, and Jan H.D. Wolf

Tillandsia eizii is an epiphytic bromeliad that due to over-collection, habitat destruction, and physiological constraints has declined to near threatened status. This species exhibits high mortality in the wild, and seed are characterized by low percentages of germination. As a means to conserve this species, in vitro culture protocols were developed to enhance seed germination and seedling growth. A sterilization protocol using 70% ethanol for 2 minutes followed by 2.6% NaOCl for 40 minutes disinfested seed and promoted seedling growth. Sucrose incorporated into the culture medium had no effect on germination or growth, while NAA inhibited growth, but not germination. Cultures maintained under a 16-hour photoperiod at 22 °C exhibited greater growth than those grown at 30 °C. Seed that germinated in the dark remained etiolated and failed to develop even after transfer to light conditions. Plants grown in vitro were successfully acclimatized and transferred to the greenhouse. Over 86% survival and rapid growth were obtained with either an all-pine-bark medium, or a mixture of 2 redwood bark: 2 fir bark: 2 potting mix: 1 perlite. This demonstrated that in vitro culture of seed may be used to rapidly produce large numbers of T. eizii, and thus can be used for the conservation and reintroduction of this species.

Free access

Alejandro Alarcon*, Frederick T. Davies, David Wm. Reed, Robin L. Autenrieth, and David A. Zuberer

Arbuscular mycorhizal fungi (AMF) have been used in phytoremediation and can increase tolerance and growth of plants in contaminated environments. However, little is known about the influence AMF on plant growth to organic contaminants in soils. A greenhouse experiment was conducted to study the response of seedlings of annual ryegrass (Lolium perenne L.) var. Passerel Plus inoculated with Glomus intraradices Schenck & Smith in soil contaminated with sweet Arabian median crude oil. Inoculated (AMF) and non-inoculated (Non-AMF) plants were established in an pasteurized and artificially contaminated sandy loam soil with 0; 3000; 15,000; or 45,000 mg of petroleum kg-1 soil (n = 20). Plants were inoculated with 500 spores of G. intraradices (Mycorise® ASP, PremierTech Biotechnologies, Canada). After 90 days, plant growth of AMF or Non-AMF plants, was drastically affected at all petroleum concentrations. However, G. intraradices enhanced plant growth, chlorophyll content, and gas exchange of plants grown at 3,000 mg kg-1 compared to Non-AMF plants. Total leaf area, chlorophyll, and net photosynthesis were also higher (+380%, +63%, and +81%, respectively) at this concentration. Water use efficiency (net photosynthesis/stomatal conductance) of AMF-plants was three times greater than Non-AMF at 3,000 mg·kg-1. At concentrations of 15,000 and 45,000 mg kg-1 AMF did not have effect, but colonization was observed (11.8% and 18.6%, respectively). These values of colonization were significantly lower than those observed in AMF-plants at 0 (42.5%) and 3,000 mg·kg-1 (55.6%). Studies are currently being conducted to understand the physiological role of AMF on plants exposed to organic contaminants.

Full access

Kirk W. Pomper, Desmond R. Layne, and Eddie B. Reed

Growth of pawpaw (Asimina triloba) seedlings in containers was examined in a factorial greenhouse experiment with four treatment levels of the slow-release fertilizer, Osmocote 14-14-14 (14N- 6.1P-11.6K), incorporated in Pro-Mix BX potting substrate at 0, 0.13, 0.26 or 0.81 kg·m-3 (0, 0.22, 0.44, or 1.37 lb/yard3) and three treatment levels of liquid-feed fertilizer of Peters 20-20-20 (20N-8.7P-16.6K) water-soluble fertilizer at 0, 250, or 500 mg·L-1 (ppm). When plants were harvested 18 weeks after sowing, seedlings subjected to the highest rate of Osmocote 14-14-14 at 0.81 kg·m-3 and liquid-feed at 500 mg·L-1 had the greatest total biomass, about 3-fold greater than nonfertilized plants. In a separate greenhouse experiment, growth of seedlings was examined with Osmocote 14-14-14 as the sole fertilizer source at six treatment levels of: 0, 0.81, 2.22, 4.43, 8.86, or 17.7 kg·m-3 (0, 1.37, 3.74, 7.47, 14.9, or 29.9 lb/yard3). Early seedling growth was hastened in the 2.22 kg·m-3 treatment rate, but delayed in 17.7 kg·m-3 treatment rate, when compared to nonfertilized control plants. When seedlings were harvested 17 weeks after sowing, plants had the greatest shoot, root, and total dry weight with Osmocote 14-14-14 at a rate of 2.22 kg·m-3. Root:shoot ratio decreased from about 1.5 without Osmocote 14-14-14, to about 0.65 at rates of 2.22 kg·m-3 or greater. Based on the results of this study, the slow-release fertilizer, Osmocote 14-14-14, can be used effectively as a sole fertilizer source when incorporated into potting substrate at a rate of 2.22 kg·m-3 or at a reduced rate of 0.81 kg·m-3 when supplemented with weekly applications of liquid-feed fertilizer at a rate of 500 mg·L-1 of Peters 20-20-20, to enhance production of container-grown pawpaw seedlings.

Full access

Margarita Pérez-Jiménez, Almudena Bayo-Canha, Gregorio López-Ortega, and Francisco M. del Amor

obtained, which can lead to genetically enhanced cultivars. Thus, seedlings are the key factor of any plant breeding program because each seed is a potential cultivar which may be able to face the market challenges. Breeding programs are composed of many

Free access

B. Tisserat and S.F. Vaughn

The growth (fresh weight), morphogenesis (number of needles and roots and shoot length) and monoterpene (α- and β-pinene) levels were determined in Pinus taeda L. (loblolly pine) seedlings exposed to 350, 1,500, 3,000, 10,000, or 30,000 μmol·mol-1 CO2 for 30 days under greenhouse conditions. Seedlings exposed to ultra-high levels (i.e., ≥3000 μmol·mol-1 CO2) had significantly higher (P = 0.05) fresh weight, needle number, root number, and shoot lengths compared to seedlings grown under ambient air (350 μmol·mol-1 CO2). Seedling fresh weights, number of roots, shoot length, and number of needles from pine seedlings supplemented with 10,000 μmol·mol-1 CO2 increased 341%, 200%, 74%, and 75 %, respectively, when compared to seedlings grown without any CO2 enrichment. In addition, α- and β-pinene levels in seedlings increased under ultra-high CO2 levels. The dominant monoterpene, α-pinene, increased 57% in seedlings grown under 10,000 μmol·mol-1 CO2 compared to levels obtained under 350 μmol·mol-1 CO2.

Free access

Thomas E. Marler and Michael V. Mickelbart

Growth response of containerized carambola (Averrhoa carambola L.) seedlings to GA applied to trunks in lanolin paste were studied under glasshouse conditions. Gibberellic acid at 0, 250, 500, or 750 mg·liter and an untreated control (no lanolin) were used. Internode length and increases in plant height and trunk cross-sectional area (TCA) did not differ for control and 0 mg·liter plants, but mostly increased with concentration of GA. Increase in TCA was determined in a second study with control and treated plants, using 500 mg GA/liter. Mean recommended graftable size (7 mm) was reached in 47 days in plants that were GA treated, and 93 days in control plants, suggesting that GA may be used to shorten nursery time for producing graftable carambola seedlings. Chemical name used: gibberellic acid (GA.,+,).