Search Results

You are looking at 1 - 10 of 2,043 items for :

  • planting depth x
Clear All

emergence are essential for growth in domestic edamame production. Appropriate planting depth is an essential management decision for all annual crops. Recommended planting depth of grain-type soybean is 3.2 to 4.5 cm ( Hummel et al., 1981 ; Nafziger, 2009

Free access

-suited genus, substrate depth can influence the rate of substrate coverage and subsequent plant growth ( Durhman et al., 2007 ; Getter and Rowe, 2008 ; Rowe et al., 2006 ). Deeper substrates are beneficial for both increased waterholding capacity ( VanWoert

Free access

nationwide ( USDA, 2016b ). Sweetpotato transplant size and planting depth in production fields are important considerations because sweetpotato is vegetatively propagated by using nonrooted stem cuttings (also called transplants or slips) for commercial

Full access

planting depth, defined as the location of the root collar relative to soil surface (grade), is of particular concern because optimum planting depth may vary among species and may be dependent on cultural practices and/or environmental conditions ( Arnold

Free access

Growers, nurseries, landscape contractors and installers, and those responsible for maintenance have observed a trend that trees are too deep within the root ball. This study addresses the relationship between planting depth and its effect on tree survival, root growth, root architecture, and caliper growth. The experiment was initiated to determine the effect of planting depth on nursery-grown trees. Three-year-old, 2.1–2.7 m, bare-root liners of Acer platanoides `Emerald Lustre', Fraxinus americana `Autumn Purple', Fraxinus pennsylvanica `Patmore', and Gleditsia triacanthos f. inermis `Shade Master' were planted in April 2004 in a completely randomized design with 20 replications per treatment per species. The trees were selected so that the distance between the graft union and the trunk flare was consistent. Trees were planted with the graft union 15.2 cm below the soil surface, or with the base of the graft union at the finished grade or with the trunk flare at the finished grade. The trees were grown in a nursery field setting with minimal supplemental watering. There were no differences in stem caliper growth at the end of two seasons in any of the four species. Root dry mass, stem elongation, and rooting structure were determined on a representative sample of trees while others were planted into the landscape for a long-term study of the effects of the original planting depth on landscape performance.

Free access

. However, this article concentrates on initial establishment. Therefore, the objective of this study was to evaluate 25 succulent plant species for green roof applications in the midwestern United States by measuring the effect of substrate depth on initial

Free access

content [e.g., jimsonweed ( Datura stramonium L.)] ( Benvenuti, 2003 ). Increased planting depth can also affect germination and emergence ( Benvenuti and Macchia, 1995 ). Large crabgrass emerged when seeds were present within 8 cm of the soil surface

Free access

.e., remediation) have not been reported. The objectives of our study therefore were to test the effects of planting depth of container-grown liners of pin oak and littleleaf linden on 1) growth during production in 0.05-m 3 (50-L; #15) nursery containers and on 2

Free access

Buffalograss [Buchloë dactyloides (Nutt.) Engelm.] is a warm-season perennial grass native to the North American Great Plains region and has been used as a low-maintenance turfgrass. Turf-type buffalograsses are available and are commonly used on nonirrigated land. Our objectives were to determine the deepest planting depth of burrs that would allow acceptable emergence, and to evaluate planting depth effects on buffalograss seedling morphology. Two greenhouse experiments were conducted in Fall 2000. Experimental design was a randomized complete block with 4 replications and a 3 (cultivar) × 6 (planting depth) factorial treatment arrangement. Results showed that buffalograss emergence decreased as planting depth increased. All cultivars had <10% total emergence at planting depths >50 mm. Emergence rate indices were greatest when planting depth was 13 mm and were significantly lower at planting depths of 51 and 76 mm. Average coleoptile length was 11 mm. Coleoptile length was similar between all planting depths except for the 13 mm depth which resulted in 9-mm-long coleoptile. Subcoleoptile internode length increased with planting depth up to 38 mm. Planting depths deeper than 38 mm did not significantly increase subcoleoptile internode length.

Free access

American mayapple (Podophyllum peltatum L.) is a rhizomatous herbaceous perennial found in wooded areas of eastern North America and is a source of the pharmaceutical compound podophyllotoxin. To explore the possible domestication of this species, this research examined strategies for establishing mayapple in field plantings using organic mulches. Mayapple rhizome segments were harvested from the wild and transplanted to raised beds in northern Mississippi in Fall 2001. Two types of mulch (pine bark or wheat straw), two depths of mulch (7.5 or 15 cm), and two planting depths (0 or 5 cm) of rhizome segments were examined in a factorial arrangement and randomized complete block design. Data were recorded during spring of 2002 and 2003. Shoot number was not affected by mulch depth, but there was a significant interaction between mulch type and rhizome planting depth. Rhizome segments planted 0 cm deep and covered with straw mulch produced about 30% fewer shoots compared to any of the other treatment combinations. Number of emerging shoots was also affected by year, with a 33% increase in shoots from 2002 to 2003. Total leaf area and total leaf dry weight were not affected by mulch depth, but there was a significant three-way interaction between mulch type, rhizome planting depth, and year. During 2002, treatment combinations were not different, but during 2003 rhizome segments planted 0 cm deep and covered with straw mulch produced less leaf area and leaf dry weight than any of the other treatment combinations. The ratio of sexual shoots to total shoots was affected by year, with a higher ratio of sexual shoots occurring in 2002 than 2003. Grasses established in bark mulch to a greater extent than in straw mulch in 2002, but weed control was excellent for all treatments in 2003. These results indicate that rhizome segments planted 0 cm deep and covered with straw mulch consistently produced fewer shoots with less leaf area and dry mass compared to any other treatment combination. We preferred bark mulch, but we can recommend either bark or straw mulch for the purpose of establishing field plantings of american mayapple in full sun as long as rhizome planting depth is 5 cm. There was no difference between the two mulching depths used in this study; therefore, a mulch depth of 7.5 cm can be recommended because of its lower cost.

Free access