Search Results

You are looking at 1 - 10 of 564 items for :

  • physiological disorders x
Clear All
Free access

Jinwook Lee, James P. Mattheis and David R. Rudell

physiological disorders ( DeEll et al., 2003 ; DeLong et al., 2004a ; Jung et al., 2010 ; Larrigaudière et al., 2010 ; Lee et al., 2012b ; Moran and McManus, 2005 ; Zanella, 2003 ). The differential (increased or decreased incidence) impacts on disorder

Free access

James C. Fulton and Mark E. Uchanski

, 1973 , 1975 ), “bitter pit” ( Eijsinga et al., 1973 ), and “pepper spot” ( Stolk and Maaswinkel, 1977 ) are different names that have been used in the literature to describe what is likely the same physiological disorder of peppers. This disorder

Free access

Jinwook Lee, James P. Mattheis and David R. Rudell

study was to investigate fruit size and 1-MCP treatment impacts on physical and physiological changes and the incidence of storage disorders such as senescent breakdown, stem-end browning, and cracking (splitting) in ‘Royal Gala’ apples stored in air at

Full access

Yosef Al Shoffe and Christopher B. Watkins

Manipulation of storage temperature for horticultural crops is an important approach for reducing physiological disorders and maintaining quality ( Jackman et al., 1988 ; Lurie, 2002 ; Wang, 1993 ). Temperature manipulation involves using optimum

Full access

Juan Pablo Zoffoli, Valentina Sanguedolce, Paulina Naranjo and Carolina Contreras

‘Granny Smith’ is the most common green apple cultivar in the world. However, it is highly susceptible to physiological disorders such as superficial scald and bitter pit ( Mitcham et al., 1996 ). These disorders reduce the effective storage time

Free access

Bradley J. Rickard, David R. Rudell and Christopher B. Watkins

innovations that are both revenue-enhancing and cost-reducing. The empirical example that motivates our work is the use of biomarkers to manage postharvest physiological disorders in long-term controlled atmosphere (CA) apple storage. Such disorders are

Full access

Jinwook Lee, In-Kyu Kang, Jacqueline F. Nock and Christopher B. Watkins

., 2007 ; DeLong et al., 2004 ; Larrigaudière et al., 2008 ; Jung and Lee, 2009 ; Watkins et al., 2000 ). Treatment with 1-MCP can reduce the development of certain physiological disorders, such as senescent breakdown ( DeLong et al., 2004 ; Jung and

Free access

Yong-Soo Hwang, Jong-Pil Chun and Jae-Chang Lee

Physiological disorder occurred in a recently developed oriental melon cultivar, `Gumssaragi-Bunchun' (Cucumis melo var. makuwa), is involved with the appearance of water soaking area in placenta and can be extended to the pulp when severely affected. Physiological changes between normal and disordered fruits were compared. Ethanol soluble sugars were significantly decreased in both pulp and placenta tissue of disordered fruits whereas acidity was increased. Ethanol and acetaldehyde accumulation were confirmed in juice from disordered fruits, which were net detectable in normal ones. The contents of boron and calcium, especially water and HCl soluble calcium, were fairly low in disordered pulp. Also, there was a great difference in pectin content between both fruit tissue and severe hydrolysis of water soluble pectins isolated from disordered placenta was found by gel chromatography. However, the hydrolysis of pectins seemed not to be associated with the increase of wall hydrolase activities such as polygalacturonase and β-galactosidase.

Free access

Joseph P. Albano, William B. Miller and Mary C. Halbrooks

A specific physiological disorder, bronze speckle (J.P.A.'s nomenclature), was consistently induced in `First Lady' and `Voyager' marigold with Fe-DTPA concentrations greater than 0.018 mm Fe-DTPA (1 ppm) applied to a soilless medium. The disorder was characterized by specific symptomology distinguished visually by speckled patterns of chlorosis and necrosis, and downward curling and cupping of leaves. The percentage of total leaf dry weight affected with symptoms generally increased with increasing Fe-DTPA treatments. Symptomatic leaf tissue had a greater Fe concentration than corresponding asymptomatic leaf tissue. Leaf Mn concentrations in symptomatic and asymptomatic tissue were similar. In `First Lady', older leaf tissue accumulated more total Fe and was associated with more severe symptoms than younger tissue. Media leachate Fe concentrations increased over 6 weeks and were larger at greater Fe-DTPA treatments. Adjustment of nutrient solution pH to 4.0, 5.25, or 6.5 did not alter media pH, nor did it prevent disorder symptoms. Application of Fe-DTPA containing nutrient solution to a soilless medium resulted in leachate Fe levels 3 times greater than for FeSO4 treatments. Chemical names used: ferric diethylenetriaminepentaacetic acid, monosodium salt (Fe-DTPA).

Free access

Gary R. Bachman and Mary C. Halbrooks

The role of Fe DTPA (Diethylenetriaminepentaacetic acid) in the occurrence of a specific physiological disorder affecting the leaves of cutting geranium was investigated. Industry reports indicate that affected leaves have excessively high concentrations of Fe and sometimes Mn. Symptoms of the disorder first affect maturing leaves, and may in severe cases affect immature leaves. Symptoms progress from marginal/interveinal chlorosis and necrosis, to affect whole leaf necrosis. Rooted cuttings were grown in a soil-less peat based media, with Fe DTPA concentrations of 1, 5, 15, and 20 ppm. Iron and manganese leaf concentrations were significantly higher in symptom than in non-symptom tissue and increased as Fe DTPA treatment level increased. As Fe DTPA treatment level increased there was a significant increase in dry weight of symptom tissue and a decrease in non-symptom tissue dry weight. Plants grown in media amended with dolomite (pH> 5.8) had similar degrees of symptom occurrence compared to plants grown in unamended media (pH ≈ 5.4).