Search Results

You are looking at 1 - 10 of 351 items for :

  • physical properties x
  • HortTechnology x
Clear All
Author:

Acceptable physical properties are an integral part of root-media quality. However, there is no one growing medium that works best in all situations because root-media physical properties are not constant, but rather can be affected by the grower. Understanding the root environment under production conditions requires an understanding of the dynamic nature of air : water : solid ratio in the medium. The objective of this review is to consider key aspects of root-medium physical properties, which include bulk density and particle size, container capacity, media settling, water absorption, rewettability, moisture release characteristics, and water loss due to evaporation from the root-medium surface.

Full access

reduction in substrate volume results in a change in physical properties that affect AS and CC. Aendekerk (1997) showed the relative decomposition and shrinkage of several peat sources as a function of substrate pH and sub-irrigation level. While pH and

Full access

properties of shallow-depth substrates and their relationship to initial plant growth. Greenhouse and laboratory trials were conducted to determine the physical properties of substrates with increasing concentrations of compost and hydrogel, and to evaluate

Full access

by the blending of two or more components such as peat, composted bark, perlite, whole rice hulls, or vermiculite ( Hanan, 1998 ; Nelson, 2003 ). Substrates are designed to have appropriate physical properties for specific crops and growing

Full access

containing up to 30% ground feather fiber. However, no information was reported regarding how the inclusion of the feather fiber affected the physical properties of the substrates. The objective of this study was to determine whether the incorporation of

Full access

Physical properties (particle size distribution, bulk density, capillary pore space, non-capillary pore space, hydraulic conductivity, and water retention) of three imported silica sands (Perth, Malaysian, and Newcastle), a man-made sand product (Mansand), and coral sand alone and in peatmoss mixtures were determined to evaluate their suitability as golf-green substrates. Based on laboratory evaluation of physical properties, the silica sands amended with peatmoss (15%) were superior to coral sand or crushed basalt (Mansand) amended with 15% peatmoss for use in high-traffic turfgrass areas.

Full access

Root substrates (substrates) are formulated from various inorganic and organic components to provide suitable physical and chemical properties as required by the specific crop and growing conditions ( Bunt, 1988 ; Nelson, 2003 ). Important

Full access

grown in plastic containers. Evans and Karcher (2004) evaluated the physical properties of peat, feather fiber, and plastic containers. They reported that plants in the peat and feather fiber biocontainers required more frequent irrigations as well as

Full access

Popular press articles report that consumers often experience inconsistent results with retail potting media; however, few reports in the popular or scientific literature have quantified the variability in media properties. The purpose of this study was to assess the variability in physical and chemical properties among different brands of retail potting media and within certain brands. Twenty-four different packages of branded media, and multiple packages of five brands, were acquired from nine regional and national retail chain stores located in the Salt Lake City, Utah, area. Samples were analyzed for five physical and nine chemical properties. The coefficients of variation (cvs) among brands for initial gravimetric water content, bulk density, porosity, water retention, and air space were 85%, 74%, 21%, 59%, and 44%, respectively. The cvs among brands for saturated media (SM) pH, SM extract electrical conductivity (EC), nitrate-nitrogen (NO3-N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), total carbon (C), total nitrogen (N), and C:N ratio were 18%, 81%, 132%, 153%, 96%, 78%, 71%, 36%, 45%, and 49%, respectively. Only one of the 24 brands met all published standards for chemical properties of premium media. Thirteen of the brands did not meet standards for NO3-N; 12 did not meet standards for pH; and six did not meet standards for EC. There was more variation in physical and chemical properties among brands than within a brand of media. Label information describing media composition was not consistent with certain physical and chemical properties. No recommendations can be made which would allow consumers to select media that meets published standards. These results indicate better awareness of and/or adherence to standards is needed by the retail media industry to improve product quality and consistency.

Full access

Conservation tillage using residue from a cover crop grown before potato (Solanum tuberosum L.) production has been infrequently and inconclusively studied. The objectives of this study were to 1) conduct a field study to evaluate soil physical properties, and potato growth and yield, in conventional-tillage (CT), no-tillage (NT), and subsurface-tillage (SST) systems and 2) conduct a greenhouse study to evaluate the effect of soil bulk density (ρb) on potato growth and yield. Potatoes (`Atlantic') were planted into residue of sorghum-sudangrass [Sorghum bicolor (L.) Moench × S. sudanense (Piper) Staph] at two sites in eastern North Carolina—Plymouth into Portsmouth fine sandy loam and Lewiston into Norfolk sandy loam. Potatoes in the NT and SST system emerged more slowly than potatoesplanted conventionally. There were no differences in plant population or size by 8 weeks after planting at Plymouth, but plant population and size were less in NT and SST systems at Lewiston. Reducing tillage also affected soil compaction, increased soil moisture early in the season at both sites, and increased ρb at Lewiston. Yield of U.S. No. 1 potatoes planted in NT and SST systems were comparable to potatoes planted in a CT system at Plymouth, but were less than potatoes planted in a CT system at Lewiston. There were no differences in yield between potatoes planted with NT and SST. In the greenhouse study, ρb did not affect leaf area or tuber yield or tuber grade. Specific sites and soils may allow for comparable potato production with no or SST, but further research, conducted on different soil types would promote further understanding of the impacts of reducing tillage in potato production.

Full access