Search Results

You are looking at 1 - 10 of 23 items for :

  • photobiology x
Clear All
Authors: and

responses: phytochrome photoequilibrium (PPE) and the R:FR ratio. Issues with these metrics are exacerbated under light-emitting diodes (LEDs), which are important to photobiology because of their narrow bandwidth. Furthermore, the high efficiency output of

Open Access

Electronic dimming of high-intensity discharge lamps offers control of photosynthetic photon flux (PPF) but is often characterized as causing significant spectral changes. Growth chambers with 400-W metal halide (MH) and high-pressure sodium (HPS) lamps were equipped with a dimmer system using silicon-controlled rectifiers (SCR) as high-speed switches. Phase control operation turned the line power off for some period of the alternating current cycle. At full power, the electrical input to HPS and MH lamps was 480 W (root mean squared) and could be decreased to 267 W and 428 W, respectively, before the arc was extinguished. Concomitant with this decrease in input power, PPF decreased by 60% in HPS and 50% in MH. The HPS lamp has characteristic spectral peaks at 589 and 595 nm. As power to the HPS lamps was decreased, the 589-nm peak remained constant while the 595-nm peak decreased, equaling the 589-nm peak at 345-W input, and the 589-nm peak was almost absent at 270-W input. The MH lamp has a broader spectral output but also has a peak at 589 nm and another smaller peak at 545 nm. As input power to the MH lamps decreased, the peak at 589 diminished to equal the 545-nm peak. As input power approached 428 W, the 589-nm peak shifted to 570 nm. While the spectrum changed as input power was decreased in the MH and HPS lamps, the phytochrome equilibrium ratio (Pfr: Ptot) remains unchanged for both lamp types.

Free access

The effect of CO2 concentration (330 and 675 μL·L−1) and photosynthetic photon flux (PPF) (mean daily peaks of 550–1400 μmol·m−2·s−1) on total mineral contents in shoots was studied in chrysanthemum [Dendranthema ×grandiflorum (Ramat) Kitam ‘Fiesta’] during three times of the year. Growth (as measured by shoot dry weight) and shoot mineral contents (weight of nutrient per shoot) of hydroponically grown plants were analyzed after 5 weeks. There was a positive synergistic interaction of CO2 concentration and PPF on growth with the greatest growth at high PPF (1400 μmol·m−2·s−1) with high CO2 (675 μL·L−1). When growth was not used as a covariate in the statistical model, both CO2 concentration and PPF significantly affected the content of all eight nutrients. However, after growth was included as a covariate in the model, nutrients were classified into three categories based on whether CO2 concentration and PPF level were needed in addition to growth to predict shoot nutrient content. Neither CO2 concentration nor PPF level was needed for Mg, Fe, and Mn contents, whereas PPF level was needed for N, P, K, and Ca contents, and both CO2 concentration and PPF level were required for B content.

Free access

In addition to photosynthesis, light is a critical mediator of secondary metabolism in plants, signaling the production of potentially health-promoting phytochemicals and regulating the emission of volatile organic compounds (VOCs) that can alter the sensory perception of a tomato. Light-emitting diodes (LEDs) are a viable way to test the effects of individual wavebands of light and are being quickly adopted by the greenhouse tomato industry. However, studies characterizing the effects of specific wavelengths of light or supplemental lighting on phytochemical content in general are lacking. We hypothesized that enriching the amount of supplemental blue and/or red light that tomatoes receive would positively affect the amount of carotenoids and phenolic compounds that accumulate in tomato fruits through cryptochrome and/or phytochrome-dependent signaling pathways. To test this hypothesis, we compared the chemical and sensory characteristics of tomatoes grown with overhead high-pressure sodium (OH-HPS) lamps to those grown with intracanopy (IC)-LEDs emitting different ratios of red, blue, and far red light. Tomatoes were profiled for total soluble solids, titratable acidity, ascorbic acid content, pH, total phenolics, and prominent flavonoids and carotenoids. Our studies indicated that greenhouse tomato fruit quality was only marginally affected by supplemental light treatments. Moreover, consumer sensory panel data indicated that tomatoes grown under different lighting treatments were comparable across the lighting treatments tested. Our research suggests that the dynamic light environment inherent to greenhouse production systems may nullify the effects of wavelengths of light used in our studies on specific aspects of fruit secondary metabolism.

Free access

Light-emitting diodes (LEDs) are a rapidly developing technology for plant growth lighting and have become a powerful tool for understanding the spectral effects of light on plants. Several studies have shown that some blue light is necessary for normal growth and development, but the effects of blue light appear to be species-dependent and may interact with other wavelengths of light as well as photosynthetic photon flux (PPF). We report the photobiological effects of three types of white LEDs (warm, neutral, and cool, with 11%, 19%, and 28% blue light, respectively) on the growth and development of radish, soybean, and wheat. All species were grown at two PPFs (200 and 500 μmol·m−2·s−1) under each LED type, which facilitated testing the effect of absolute (μmol photons per m−2·s−1) and relative (percent of total PPF) blue light on plant development. Root and shoot environmental conditions other than light quality were uniformly maintained among six chambers (three lamp types × two PPFs). All LEDs had similar phytochrome photoequilibria and red:far red ratios. Blue light did not affect total dry weight (DW) in any species but significantly altered plant development. Overall, the low blue light from warm white LEDs increased stem elongation and leaf expansion, whereas the high blue light from cool white LEDs resulted in more compact plants. For radish and soybean, absolute blue light was a better predictor of stem elongation than relative blue light, but relative blue light better predicted leaf area. Absolute blue light better predicted the percent leaf DW in radish and soybean and percent tiller DW in wheat. The largest percentage differences among light sources occurred in low light (200 μmol·m−2·s−1). These results confirm and extend the results of other studies indicating that light quantity and quality interact to determine plant morphology. The optimal amount of blue light likely changes with plant age because plant communities balance the need for rapid leaf expansion, which is necessary to maximize radiation capture, with prevention of excessive stem elongation. A thorough understanding of this interaction is essential to the development of light sources for optimal plant growth and development.

Free access
Author:

Light-emitting diodes (LEDs) are solid-state semiconductor devices that produce narrow spectrum light when voltage is applied. The use of LEDs in photobiology research was reported in the 1980s and the concept of using LEDs for plant lighting was

Free access
Author:

United States ( Ignatius et al., 1991 ) and LEDs were soon incorporated into instrumentation to study photobiology, photosynthesis, and plant physiology ( Tennessen et al., 1994 ). NASA has continued to fund this research over the ensuing decades and the

Free access

University of Hawaii Press Honolulu, HI Kevin, W. 2000 ‘Photo-manipulation-boxes’: An instrument for the study of plant photobiology Plant Photobiol. 26 3 15 Kim, S.J. Hahn, E.J. Heo, J.W. Paek, K.Y. 2004 Effects of LEDs on net photosynthetic rate, growth and

Free access

. Fujiwara, K. Goto, E. Kurata, K. 2004 Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light Plant Cell Physiol. 45 1870 1874 McDonald, M.S. 2003 Photobiology in higher plants John Wiley & Sons Chichester

Free access
Authors: , , and

, B. Sabzalian, M.R. 2014 Photosynthesis under artificial light: The shift in primary and secondary metabolism Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 20130243 Davis, P.A. Burns, C. 2016 Photobiology in protected horticulture Food Energy Secur. 5

Open Access