Search Results

You are looking at 1 - 10 of 2,187 items for :

  • pH management x
Clear All

Maintaining pH to optimize nutrient availability in unbuffered nutrient solutions is important for closed spaceflight hydroponic systems and in agriculture. Total nutrient uptake is reflected by electrical conductivity (EC) measurements, while pH reflects the net imbalance of cation and anion absorption. The pH of nitrate-only (0 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} : 100 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} ) nutrient solutions normally increases, whereas with equimolar (50 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} : 50 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} ), solutions, pH decreases. However, when solution pH was controlled to 5.8 by a mixed N sources (25 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} : 75 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} ), plant yields of semi-dwarf wheat (Triticum aestivum cv. `Yecora Rojo') were equal to the control (0 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} : 100 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} ) system. When nutrient uptake was monitored at 15-min intervals, it was found that \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} were taken up simultaneously. Uptake of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} was more rapid than \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} . The change in pH and EC was primarily a function of the absorption of three ions, namely \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} , \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} , and K+. A significant amount of the K+ uptake was highly correlated (P < 0.001) to the presence of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} in solution. When the daily N requirement was supplied as a 25 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} : 75 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} mixture, comparatively little change in solution pH occurred, with reduced K+ uptake by the plants. Thus, by knowing the daily crop N requirement from the relative growth rate, the pH fluctuations within hydroponic nutrient solutions can be reduced with daily additions of a balanced nutrient solution with a 25 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} : 75 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} mixture of N.

Free access

Impatiens were planted into peat-based media containing two dolomitic liming materials [Ca(OH)2·Mg(OH)2 at 1.8 kg·m–3 or CaCO3·MgCO3 at 8.4 kg·m–3] and subirrigated for 17 weeks using four irrigation water qualities (IWQ) with varied alkalinity, Ca2+, Mg2+, and SO4-S content and three water-soluble fertilizers (WSF) with varied NH4:NO3 ratio, Ca2+, Mg2+, and SO4-S content. After 8 weeks, medium pH ranged from 4.5 to 8.5. Lime type did not affect the long-term increase in medium pH, Ca2+, and Mg2+ concentrations with IWQ/WSF solutions containing low NH4-N and high Ca2+ and Mg2+ concentrations. The carbonate lime did buffer the medium pH, Ca2+, and Mg2+ concentrations with IWQ/WSF solutions containing high NH4-N and low Ca2+ and Mg2+ concentrations. With both lime types, there was a linear increase in tissue Ca and Mg as the applied concentrations increased from 0.5 to 4.0 mol·m–3 Ca2+ and 0.3 to 3.0 mol·m–3 Mg2+ with the various IWQ/WSF. The relationship was similar for both lime types up to week 8, after which tissue Ca and Mg decreased with the hydrated lime and low solution Ca2+ and Mg2+. Relationships were also developed between the applied SO4-S concentration and tissue S and medium pH and tissue P.

Free access

Hybrid impatiens (Impatiens Wallerana Hook. F.) were planted in six root media containing either 70% (by volume) rockwool, coir, or four types of sphagnum peat and 30% perlite. The six media varied in cation exchange capacities (CEC) (from 5 to 76 meq·L-1) and the amount of a dolomitic hydrated lime [Ca(OH)2 and Mg(OH)2 at 0 to 4.5 kg·m-3) required to obtain an initial pH of ≈6.0. Two additional treatments were produced by using a dolomitic carbonate lime (CaCO3 and MgCO3) at 8.4 kg·m-3 instead of the hydrated lime in two of the sphagnum peat media. Plants were subirrigated for 17 weeks using three nutrient solutions (NS) that contained at 200N-20P-200K mg·L-1 but had a variable NH4 : NO3 ratio and Ca2+ and Mg2+ content. The NS were designed to produce either acidic, neutral, or basic reactions in the medium. In media containing the hydrated lime, the NS was the primary factor controlling medium pH. However, within each NS treatment, the media did have some effect on buffering the pH over time. There was a linear increase in shoot-tissue Ca and Mg as the applied concentration of Ca2+ increased from 18 to 156 mg·L-1 and that of Mg2+ increased from 5 to 56 mg·L-1. Linear regression analysis of shoot-tissue Ca and Mg based on their concentration in the NS indicated a similar overall decrease in the Ca and Mg supply in all six root media over time. For plants grown in media containing the carbonate lime, shoot dry mass was similar to that of plants grown in the same media with hydrated lime. The presence of the carbonate lime in the media increased the pH buffering capacity against decreasing pH with the acidic and neutral NS but not against increasing pH with the basic NS. In the media containing the carbonate lime and given the acidic NS, root-medium and shoot-tissue Ca and Mg increased by weeks 12 and 17 compared to that of the same medium containing the hydrated lime. There were minimal differences in root-media and shoot-tissue Ca and Mg concentration between lime treatments when given the neutral or basic NS.

Free access

Hybrid impatiens (Impatiens Wallerana Hook. F.) were planted in a peat-based medium containing two dolomitic liming materials (1.8 kg Ca(OH)2·Mg(OH)2/m3 or 8.4 kg CaCO3·MgCO3/m3) and subirrigated for 17 weeks using four irrigation-water sources (IWSs) with varied bicarbonate alkalinity, Ca2+, Mg2+, and SO4-S content and three water-soluble fertilizers (WSFs) that contained (in mg) 200N-20P-200K/liter but a variable NH4: NO3 ratio, Ca2+, Mg2+, and SO4-S content. The factorial arrangement of the IWS and WSF resulted in a range of Ca2+, Mg2+, and SO4-S concentrations varying by a factor of 10. After 8 weeks, medium pH ranged from 4.5 to 8.5. The maximum critical medium pH for PO4-P uptake was 7.4 to 7.7, which probably was due to a change in most of the water-soluble P to the less-available HPO4 2- form. Lime type did not affect the long-term increase in medium pH, Ca2+, and Mg2+ concentrations with nutrient solutions containing low NH4 +-N and high Ca2+ and Mg2+. The carbonate lime buffered the medium pH and Ca2+ and Mg2+ concentrations with nutrient solutions containing high NH4 +-N and low Ca2+ and Mg2+ compared to that measured with the hydrated lime. With both lime types, there was a linear increase in tissue Ca and Mg as the applied concentrations of the various nutrient solutions increased from 18 to 210 mg Ca2+/liter and 7 to 90 mg Mg2+/liter. The relationship was similar for both lime types up to week 8, after which tissue Ca and Mg decreased more rapidly with the hydrated lime and low solution Ca2+ and Mg2+ compared to that of the same carbonate lime treatments. The minimum critical SO4-S concentration in the applied nutrient solution for plant uptake was 30 to 40 mg S/liter. Below this concentration, tissue S decreased rapidly; above, there was little effect on tissue S.

Free access

which are affected by plant nutrient status directly. Adversely effects of inadequate pH are well known in hydroponics nutrient management as pH affects availability of many essential nutrients for plant growth ( Adams, 2002 ). For example, Arnon and

Open Access

://epa.ohio.gov/ddagw/gwqcp > Argo, W.R. Biernbaum, J.A. 1996 The effect of lime, irrigation-water source, and water-soluble fertilizer on root-zone pH, electrical conductivity, and macronutrient management of container root media with impatiens J. Amer. Soc. Hort. Sci. 121 442 452

Open Access

reducing the disease incidence at low pH of hydroponic nutrient solution. If this disease management strategy is shown viable for a wide range of hydroponic systems, the low cost of acid to reach lower-than-conventional pH is an advantage compared with

Open Access

and management of the experimental plots, we were able to investigate soil quality under high tunnels compared with adjacent fields under both conventional and organic management. Measures of soil quality were: pH, salinity, total soil C, and POM C

Free access

a substrate is an important property that should be considered for pH control and management in greenhouse crop production. The results shown in Figures 6 and 7 indicate that the gasometric system is a useful tool for optimizing lime application

Free access

pH and preventing drift is, therefore, an important aspect of nutrient management. Plants affect root zone pH primarily through differential uptake of cation and anion nutrients ( Haynes, 1990 ; Lea-Cox et al., 1996 ; Marschner, 2012 ; Rengel, 2003

Free access