about 65% to 75% monounsaturated fatty acids (oleic and palmitoleic) and 10% to 15% polyunsaturated fatty acids (linoleic) ( Ozdemir and Topuz, 2004 ). Total oil content may exceed 30%, depending on cultivar and maturity ( Woolf et al., 2004 ). The
have demonstrated previously that muskmelon fruit harvested at different maturity deliver stored cubes differing significantly in flavor and textural attributes ( Beaulieu et al., 2004 ). Subsequently, muskmelon fruit were evaluated during development
Maturity at harvest influenced storage life of guava (Psidium guajava L.) fruit kept at 3.5, 7, or 11C and 80% or 88% RH. Quality characteristics considered were firmness, pH, titratable acidity, ascorbic acid and soluble solids concentrations, and weight loss. Chilling injury was observed only in guavas harvested at the mature-green stage and kept at 3.5 or 7C. The storage life of fruit kept at 11C was reduced due to fungal attack. The best results were obtained with guavas harvested at the color-turning stage followed by storage at 7C and 80% RH for 3 weeks. These fruits had good appearance 5 days after removal from storage.
The potential to use percentage of dry matter (DM) and/or oil of the flesh of `Hass' avocado as a maturity standard to determine the latest harvest for acceptable fruit quality, was investigated. `Hass' avocado fruit were harvested from early October to mid-January from a commercial orchard in subtropical Queensland. The percentage of DM and oil changed little during the harvest period, and the eating quality of the flesh remained high. However, the incidence of body rots (caused mainly by Colletotrichum sp.) and the flesh disorders grey pulp and vascular browning, increased with harvest. These results indicate that percentage of DM and oil are not reliable late-maturity standards because of the inconsistent change with later harvests, and that disease and internal disorders can be the main determinants of latest acceptable harvest, rather than eating quality.
Abstract
The accessions, PI 255960 (P1) (purple flowers, colored seed, curved pod tip, large seed) and G-19007 (P2) (white flowers, straight pod tip, white seed) of Phaseolus vulgaris L., both late maturing with many ovules and seeds per pod, were crossed with each other and with 2 early maturing, white flowered, white seeded, straight pod tip, low ovule number/pod parents, ‘Great Northern (GN) Emerson’ (P3) and ‘GN UI#59’ (P4). P1 and P2 appeared to possess the same genes for high ovule number/pod. The continuous distributions of ovule number/pod, seed number/pod, and seed weight in the F2 generations of the other crosses indicated quantitative inheritance. However, segregation data in their F3 generations suggested that ovule number/pod may be determined by additive action of the alleles of a single major gene. Moderately high broad sense heritability estimates were obtained for these traits. Purple flower color and seed-coat color were controlled by 2 different complementary dominant genes. Striped pod color and curved pod tip shape (Ct) were each controlled by different single dominant genes. Days to flowering was controlled by a single completely dominant gene; pod maturity was controlled by a single incompletely dominant gene for lateness. Linkage occurred between genes for flower color and pod color pattern, flower color and pod tip shape, and flower color and maturity. High seed number/pod was associated with purple flowers, colored seeds, and late maturity in the F2 of P3 × P1. Late maturity and high seed number/pod were also associated in the F2 of P4×P1, P3× P2 and P4 × P2. Moderately large negative correlations were found between number of seeds/pod and seed weight in all crosses involving P1 and P2. High ovule number/pod was associated with indeterminate growth habit and moderately late flowering in the F2 progeny from the indeterminate cultivar ‘G.N. Nebr. # 1’, crossed with a determinate isoline. No association between seed weight & seed-coat color was observed in the F2 of P3 × P1, and P4 × P1, but there was association between large seed and both late maturity and flower color.
A likely reason why consumers are not repeat buyers of many fresh-cut fruit is inconsistent or unsatisfactory flavor and/or textural quality. Research toward understanding mechanisms responsible for generation, and/or loss of flavor compounds in fresh-cut fruit is limited. Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) were utilized to study flavor volatile profiles in anthesis-tagged cantaloupe (Cucumis melo L. var. reticulatus Naud. cv. Sol Real) during growth, development, and for fresh-cuts prepared from fruit with five distinctly different harvest maturities. One-quarter-slip fruit had a clearly green, well-attached peduncle; 1/2-slip fruit had a distinct abscission detectable at the peduncle, 3/4-slip fruit were approaching commercial harvest, full-slip (FS) fruit are or will cleanly separate from the vine with light pressure; and over-ripeness (OR) was precisely categorized as 2 days past FS. Recovery of total volatiles displayed a linear response and most volatile classes (except aldehydes) generally followed a trend upon processing where FS > 3/4-slip > 1/2-slip > 1/4-slip. On day 0, only 70.0%, 37.7%, and 20.5% total volatiles were recovered in 3/4-slip, 1/2-slip, and 1/4-slip fruit, compared to FS fruit. During fresh-cut storage, percent total esters followed an increasing linear trend that was maturity-dependent. Percent total aromatics and percent aldehydes followed a linear trend that was maturity-dependent whereby 1/4-slip > 1/2-slip > 3/4-slip > FS. During storage, the relative percentage of acetates decreased, and displayed a maturity-dependent curvilinear trend. The magnitude of the slope decreased with maturity, indicating that the effect of storage time decreased as maturity increased. In FS, 3/4-slip, 1/2-slip, and 1/4-slip cubes, acetates comprised 66.9% of all compounds recovered on day 0 yet, only 26.1% to 44.2%, and 21.3% to 32.6% remained on days 9 and 14, respectively. For all maturities, a curvilinear increase in relative percentage of nonacetate esters was observed during storage. There was a uniform change in the ester balance (nonacetate ester:acetate ratio) during fresh-cut storage, which was independent of initial processing maturity. The overall ester ratio changed roughly 2-fold after just 2 days in optimum storage, and after 5 days it increased more than 3-fold. The shift in endogenous ester compounds could be partially responsible for the apparent loss of characteristic flavor in fresh-cut cantaloupe through long-term storage.
based on percentage of expected head size reached, which can be highly variable and therefore difficult to evaluate with precision. Furthermore, growers are using not only head size, but also head firmness, to define commercial maturity. After heading
timed or excessive pruning can reduce fruit DMC, delay maturity, and reduce concentrations of inorganic nutrients in fruit ( Candolfi-Vasconcelos and Koblet, 1990 ; Siham et al., 2005 ; Valladares et al., 2007 ). Trunk girdling interrupts the phloem
Abstract
Succinic acid-2,2-dimethylhydrazide (daminozide) effectively retarded growth of vigorous young trees of sweet cherry (Prunus avium L.) if applied at rates above 4000 ppm and more than a month after bloom. It was relatively ineffective at 2000 ppm and within 2 weeks of bloom. Color, soluble solids, size and firmness of treated fruit were the same as on untreated fruit harvested 4 days later. Yield of ‘Bing’ was slightly increased. Daminozide induced “June” drop of ‘Bing’ and ‘Chinook’ and should be recognized as. a thinning agent on cherries. Treated cherries were more subject to post-harvest decay during 4 weeks’ storage at 0—2°C. Uniformity of color was increased slightly but significantly. There appeared to be no delerterious long-term effects of daminozide to sweet cherry trees.
`Honeycrisp' is a new apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] cultivar that has been planted extensively in North America, but the storage disorders soggy breakdown and soft scald have resulted in major fruit losses. The effects of harvest date and storage temperature on fruit quality and susceptibility of fruit to these disorders have been investigated in Michigan, New York, and Maine. Internal ethylene concentrations were variable over a wide range of harvest dates, and a rapid increase in autocatalytic ethylene production was not always apparent. The starch pattern index, soluble solids content, titratable acidity and firmness also appear to have limited use as harvest indices. Development of soggy breakdown and soft scald is associated with later harvest dates and storage of fruit at temperatures of 0 to 0.5 °C compared with higher storage temperatures. It is recommended that `Honeycrisp' be stored at 3 °C, although storage disorders still can occur at this temperature if fruit are harvested late. In addition, greasiness development may be worse at higher storage temperatures.