Search Results

You are looking at 1 - 10 of 87 items for :

  • leaf boundary layer x
  • Refine by Access: All x
Clear All
Free access

Toshio Shibuya, Akihito Sugimoto, Yoshiaki Kitaya, and Makoto Kiyota

water stress resulting from high vapor-pressure deficit (VPD). Under higher plant density, the VPD near the leaf surface decreases as a result of the thicker boundary layer ( Kim et al., 1996b ; Kitaya et al., 1998 ), which inhibits water vapor exchange

Free access

Toshio Shibuya, Akihito Sugimoto, Yoshiaki Kitaya, Makoto Kiyota, Yuichiro Nagasaka, and Shinya Kawaguchi

·m −1 ) and the leaf boundary layer resistance from the leaf surface to the atmosphere 3 mm above and below the leaf surface, ( R b , s·m −1 ), was estimated with Tr and the VPD near the leaf surface based on the vapor diffusion model. The R l was

Free access

K.A. Shackel, V. Novello, and E.G. Sutter

The relative contribution of stomatal and cuticular conductance to transpiration from whole tissue-cultured apple shoots of Malus pumila Mill. M.26 was determined with a modified steady state porometer. When shoots were exposed to 90% RH and high boundary layer conductance, large (73%) and, in some eases, rapid (2 to 3 hours) reductions in leaf conductance occurred, indicating functional stomata. Stomatal closure was also observed microscopically. A maximum estimate for the cuticular conductance of these apple leaves was 18 to 40 mmol·m-2·s-1, which is lower than previous estimates and close to the upper limit of naturally occurring leaf cuticular conductances. Hence, both stomatal and cuticular restrictions of water loss appear to be of importance in determining the water balance of tissue-cultured apple loots. The pathway of water transport in relation to water stress of tissue-cultured shoots is also discussed.

Free access

Roger Kjelgren

Growth and water relations of Kentucky coffee tree [Gymnocladus dioica (L.) K. Koch] whips in translucent tubelike shelters were investigated. In a container study, 1.2-m-high shelters were placed over whips following transplanting, then diurnal microclimate, water relations, and water use were measured. Shelter air temperature and vapor pressure were substantially higher, and solar radiation was 70% lower, than ambient conditions. Sheltered trees responded with nearly three-times higher stomatrd conductance than nonsheltered trees. However, due to substantially lower boundary layer conductance created by the shelter, normalized water use was 40910 lower. In a second experiment, same-sized shelters were placed on whips following spring transplanting in the field. Predawn and midday leaf water potentials and midday stomatal conductance (g,) were monitored periodically through the season, and growth was measured in late summer. Midday gs was also much higher in field-grown trees with shelters than in those without. Sheltered trees in the field had four times greater terminal shoot elongation but 40% less stem diameter growth. Attenuated radiation in the shelters and lower specific leaf area of sheltered trees indicated shade acclimation. Shelters can improve height and reduce water loss during establishment in a field nursery, but they do not allow for sufficient trunk growth.

Free access

Krishna S. Nemali and Marc W. van Iersel

Optimal substrate volumetric water content (θ) and drought tolerance of impatiens, petunia, salvia, and vinca were investigated by growing plants under four constant levels of θ (0.09, 0.15, 0.22, and 0.32 m3·m-3). Gas exchange, quantum efficiency (ΦPSII), electron transport rate (ETR), non-photochemical quenching (NPQ), and leaf water potential (ϒ) were measured for all species, and response of photosynthesis (Pn) to internal CO2 concentration (Ci) was studied in petunia and salvia. Leaf photosynthesis (Pmax) was highest at a θ of 0.22 m3·m-3 for all species and did not differ between a θ of 0.15 and 0.22 m3·m-3 for vinca and petunia. The Pn-Ci response curves for petunia were almost identical at a θ of 0.22 and 0.15 m3·m-3. Regardless of species, ETR and ΦPSII were highest and NPQ was lowest at a θ of 0.22 m3·m-3. Based on these results, a θ of 0.22 m3·m-3 for salvia and impatiens and a slightly lower θ of 0.15 m3·m-3 for vinca and petunia, is optimal. Mean osmotic potential in all treatments was lower in vinca and salvia and resulted in higher turgor potential in these species than other species. Analysis of Pn-Ci response curves indicated that Pn at a θ of 0.09 m3·m-3 was limited by both gas phase (stomatal and boundary layer) and non-gas phase (mesophyll) resistance to CO2 transfer in salvia. At the lowest θ level, Pn in petunia was only limited by gas phase resistance, indicating that absence of mesophyll resistance during drought may play a role in the drought tolerance of petunia.

Free access

Qiyuan Pan and Bruno Quebedeaux

Low CO2 concentrations ([CO2]) frequently occur in dense crop canopy. To determine plant performance under sub-atmospheric [CO2], young `Gala' apple plants were phytotron-grown at 928 mmole m-2s-1 light intensity. Whole-plant photosynthesis and respiration under [CO2] between 0 and the ambient level (382 to 460 ml 1-1) were measured by monitoring [CO2] of the air entering and coming out of a 38-1 clear plexiglass gas exchange chamber at either 3.4 or 6.2 1 min-1. The chamber seals two plants of up to 77 cm height for long-term experiments. There was a linear relationship between [CO2] and net photosynthesis (Pn), with the R2 being as high as 0.99. The increase of Pn with increased [CO2] was 51% greater for the high air flow than for the low air flow. At the ambient CO2 level Pn at the high flow rate was 49% higher than that at the low flow rate. CO2 compensation points were 57.6 and 58.5 ml 1-1 at the high and low flow rates, respectively. The relationship between [CO2] and dark respiration was linear. Dark respiration decreased by 20% on average as the [CO2] increased from 0 to the ambient level, and it was 11% higher at the high flow rate than at the low flow rate. These results suggest that wind may act to reduce Pn depression in dense crop canopy by both reducing leaf resistance and atmospheric [CO2] gradient outside the boundary layer.

Free access

William L. Bauerle and Joseph D. Bowden

The boundary layer governs the diffusion of gases between vegetation and the atmosphere at the leaf and whole crown scale. Although Prandtl is credited with the introduction of boundary layer theory in 1904 ( Schlichting and Gersten, 2004 ), the

Free access

Evagelini Kitta, Nikolaos Katsoulas, Anna Kandila, Maria M. González-Real, and Alain Baille

the components of total stomatal conductance ( g t ) (leaf boundary layer conductance, g b , and g S ) on the transpiration flux. When leaves are well coupled to the environment, g S (a driver of intrinsic WUE) is the main determinant of g t (a

Full access

Dalong Zhang, Yuping Liu, Yang Li, Lijie Qin, Jun Li, and Fei Xu

the leaf–air boundary was the greatest along the soil–plant–atmosphere continuum and was reduced substantially in the low-VPD treatment ( Fig. 2 ). Qualitatively, the water driving force at the leaf–atmosphere boundary can be 100-fold larger than that

Open access

Haoran Fu, Qingxu Ma, Zhengbo Ma, Yingzhao Hu, Fan Liu, Kaijun Chen, Wankun Pan, Sheng Tang, Xin Zhang, and Lianghuan Wu

the same rule as S i , for which the leaf contents were within reasonable intervals. For S iii , we selected two main limiting factors of soil, management, and internal factors according to the boundary line model; the increasing fertilizer and yield