Search Results

You are looking at 1 - 10 of 2,749 items for :

  • height control x
Clear All
Full access

Robert Berghage

Temperature management has emerged as an important tool for plant height control in greenhouse production systems. This is particularly important in vegetable transplant production where chemical controls for plant height are limited or not legal. Plant height is a function of the number of nodes and the length of each internode, and both are strongly influenced by greenhouse temperatures. Node number, or formation rate, is primarily a function of the average greenhouse temperature, increasing as the average temperature increases. Internode length is strongly influenced by the relationship between the day and night temperature, commonly referred to as DIF (day temperature - night temperature). As DIF increases, so does internode length in most plant species studied. Although the nature and magnitude of temperature effects vary with species, cultivar, and environmental conditions, these two basic responses can be used to modify transplant growth. Although data are limited, controlling transplant height with temperature does not appear to adversely influence plant establishment or subsequent yield.

Full access

Barbara A. Fair, Brian Whipker,, Ingram McCall and Wayne Buhler

butterflies. Hybrid sage was selected for this study based on its popularity in southern gardens and to determine if a plant growth regulator (PGR) could help control stem height, potentially increasing ease of shipping and handling. In previous work ( Latimer

Free access

Christopher J. Biai, José G. Garzon, Jason A. Osborne, Jonathan R. Schultheis, Ronald J. Gehl and Christopher C. Gunter

, 1991 ; Pekic et al., 1995 ). Goreta et al. (2007) found that poblano pepper seedling plant height was significantly shorter when sprayed with 2000 mg·L −1 ABA in a foliar application compared with a control at 3 and 6 d after transplanting (DAT

Full access

Amir Rezazadeh and Richard L. Harkess

leaves and attractive terminal or axillary lavender to purple spikes of flowers ( Riffle, 1998 ). However, without height control, firespike grows too tall exceeding the commercial requirements for potted plants. Thus, control of firespike stem elongation

Full access

Lucia E. Villavicencio, James A. Bethke and Lea Corkidi

Commercial nursery crop production in the United States involves the use of chemical plant growth regulators (PGRs) to control plant growth and height ( Hayashi et al., 2001 ; Latimer and Scoggins, 2012 ). Compact plants are easier to transplant

Free access

Cheryl Hamaker, William H. Carlson, Royal D. Heins and Arthur C. Cameron

Twenty species of perennials were trialed to determine the effectiveness of five growth retardants on final plant height and flowering. Growth retardant treatments consisted of five sprays: 100 ppm ancymidol, 1500 ppm chlormequat, 5000 ppm daminozide, 30 ppm paclobutrazol, or 15 ppm uniconazole. Also included for comparison were two drenches of 15 ppm paclobutrazol or 7.5 ppm uniconazole. Spray treatments consisted of one application every 10 days until anthesis. Drench treatments consisted of one application only. Data for days to visible bud and anthesis, bud number, and final height were collected. Plant response varied significantly between growth retardant treatments. Sprays of ancymidol, chlormequat, daminozide, paclobutrazol, and uniconazole effectively controlled the height of 4, 3, 13, 4, and 12 species, respectively. Daminozide and uniconazole were the most effective sprays at controlling height on a broad range of species. However, daminozide delayed anthesis compared to control treatments of at least 5 species. Drench treatments of paclobutrazol and uniconazole were effective on 14 and 15 species, respectively. The number of responsive species increased significantly when paclobutrazol was used as a drench rather than a spray. All species tested were responsive to at least one growth retardant treatment.

Full access

Paul R. Fisher and Royal D. Heins

A methodology based on process-control approaches used in industrial production is introduced to control the height of poinsettia (Euphorbia pulcherrima L.). Graphical control charts of actual vs. target process data are intuitive and easy to use, rapidly identify trends, and provide a guideline to growers. Target reference values in the poinsettia height control chart accommodate the biological and industrial constraints of a stemelongation model and market specifications, respectively. A control algorithm (proportional-derivative control) provides a link between the control chart and a knowledge-based or expert computer system. A knowledge-based system can be used to encapsulate research information and production expertise and provide management recommendations to growers.

Full access

Kimberly R. Hilgers, Cynthia Haynes and William R. Graves

The objective of this study was to determine the efficacy of plant growth regulators applied as foliar sprays on height and branching of seashore mallow (Kosteletzkya virginica). Five chemical plant growth regulators were applied: ancymidol [15, 25, and 50 mg·L–1 (ppm)] (A-Rest; Elanco Products Co., Indianapolis), dikegulac sodium (500, 1000, and 1500 mg.L–1) (Atrimmec; PBI/Gordon Corp., Kansas City, Mo.), paclobutrazol (10, 20, and 60 mg·L–1) (Bonzi; Uniroyal Chemical Co., Middlebury, Conn.), chlormequat chloride (CCC) (750, 1000, and 1500 mg·L–1) (Cycocel; Olympic Horticultural Products, Mainland, Pa.), and CCC/daminozide mixes (1000/2500, 1000/5000, and 1500/5000 mg·L–1) (Cycocel and B-Nine; Uniroyal Chemical Co.). Ten replicate plants of each concentration were evaluated weekly for plant height and number of branches for 8 weeks. Plants that received CCC and CCC/daminozide treatments at all concentrations and paclobutrazol at 60 mg·L–1 were 60%, 60%, and 48% shorter than control plants and had 113%, 100%, and 75% more branches than control plants, respectively. All concentrations of ancymidol and dikegulac sodium-treated plants were similar to control plants. Paclobutrazol was applied twice, and only the highest concentration was effective for height control. Chlormequat chloride at the lowest concentration was as effective as all other concentrations of CCC and CCC/daminozide.

Free access

Teresa A. Cerny, Nihal C. Rajapakse and Ryu Oi

A research collaboration between Clemson Univ. and Mitsui Chemicals, Japan, has been established to develop and test photoselective greenhouse covers that can filter out far-red (FR) light and control plant height with minimal use of chemicals. The effects of polymethyl methacylate (PMMA) filters containing FR-intercepting dyes were evaluated on watermelon, pepper, chrysanthemum, and tomato to select an optimum dye concentration. As the dye concentration increased, FR interception increased, photosynthetic photon flux (PPF) decreased, and phytochrome photoequilibrium increased from 0.72 to 0.82. Light transmitted through photoselective filters reduced plant height effectively in all species tested. However, watermelon was the most responsive (50% height reduction) and chrysanthemum was the least responsive (20% height reduction) to filtered light. Tomato and peppers had an intermediate response. In watermelons, total shoot dry weight was reduced over 25% compared to the control plants, with a progressive decrease in shoot weight as the dye concentration increased. The specific stem dry weight was gradually reduced as the dye concentration increased. Specific leaf dry weight was slightly reduced under filters, suggesting that smaller plants as opposed to a reduction in dry matter production primarily caused total dry weight reduction. Light transmitted through filters reduced percentage dry matter accumulation into stems from 27% to 18% and increased dry matter accumulation into leaves from 73% to 82%. Photoselective filters are effective in controlling height similarly to chemical growth regulators. Considering the PAR reduction by increase in dye concentration, a dye concentration that gives a light reduction of 25% or 35% may be optimum for commercial development of photoselective films.

Free access

James E. Barrett, Carolyn A. Bartuska and Terril A. Nell

Paclobutrazol drench treatments were evaluated for efficacy on Caladium ×hortulanum (Birdsey) cultivars Aaron, White Christmas, and Carolyn Wharton. Drenches at 2.0 mg/pot did not reduce height of `Aaron' and `White Christmas' plants when applied 1 week after planting, but 2.0 mg applied at 3 weeks after planting did result in shorter plants. The difference for time of application may be due to the amount of roots present to take up paclobutrazol when applied. In two factorial experiments, there were no interactions between cultivar and time of application or amount of chemical. Paclobutrazol at 0.5 mg/pot resulted in plants that were shorter than the controls. Higher amounts of paclobutrazol provided additional reductions in height, but there was variation between the experiments for degree of effect with amounts >1 mg. Generally, commercially acceptable height control was provided by paclobutrazol drench treatments at 0.5 and 1.0 mg/pot applied 3 weeks after planting. Chemical names used: (2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-1,2,4-triazol-1-yl-pentan-3-ol (paclobutrazol).