Search Results

You are looking at 1 - 10 of 1,035 items for :

  • heat tolerance x
Clear All

activities were associated with the differences in heat tolerance of turfgrasses and indicated a positive correlation between chlorophyll content and the antioxidant enzymes and a negative correlation between membrane injury index and the antioxidant enzymes

Free access

to survive subsequent exposures to potentially lethal temperatures ( Krebs and Loeschficke, 1994 ; O'Connell, 1994 ; Vierling, 1991 ). The capacity of plants to acclimate and survive under high temperature is a critical factor in heat tolerance

Free access

al., 2008 ). Heat tolerance is a complex trait that varies with the severity of stress and plant growth stage. Therefore, there is a need to identify heat-tolerant carrot germplasm with stable growth and yield under high temperature at various stages

Free access
Authors: and

mechanisms of plant heat tolerance. Recently, a heat-tolerant C 3 perennial grass species, Agrostis scabra , has been identified growing in geothermally heated areas in Yellowstone National Park, Wyo. ( Stout and Al-Niemi, 2002 ). It survives or even

Free access

the present-day transition zone ( National Assessment Synthesis Team, 2000 ). Thus, understanding the mechanisms of heat tolerance is increasingly important for turfgrass breeders and managers. Cellular membranes, which are selectively permeable

Free access

species such as hard fescue [ Festuca trachyphylla ( Wang et al., 2017 )]. Seed priming or foliar spraying sterols have been found to have positive effects on improving plant tolerance to abiotic stresses, such as heat stress in tomato [ Solanum

Open Access
Authors: , , and

far, differences in heat tolerance have been detected among rose cultivars in their ability to maintain consistent flower size and numerous flowers under heat stress in the field and in flower abscission and leaf necrosis in response to a heat

Free access

measuring electrolyte leakage from leaves of plants at different temperatures. Several studies have indicated that CMT is effective in detecting genetic differences with regard to heat tolerance among several crops ( Islam et al., 2014 ; Kumar et al., 2012

Free access

Heat stress on field grown Phaseolus lunatus (lima bean) can have a significant influence on yield. Lima bean crops grown in Delaware typically yield less pounds per acre than the same cultivars grown in California. Part of this effect may be due to extreme heat conditions or fluctuations during Delaware's summers, which can affect blossom and pod set. Our purpose was to analyze the heat tolerance of various cultivars of P. lunatus using quick bioassays and to establish a relationship to yield in greenhouse temperature trials. Two assays were used. The first, a hypocotyl extension assay, consisted of a treatment of germinated seedlings at 25, 35, or 42 for 2 h and observations of hypocotyl extension at 72 and 96 h posttemperature treatments. Three cultivars [`Fordhook' 1072 (heat-sensitive), `Jackson Wonder' (heat-tolerant), and `Early Thorogreen' (heat tolerant)] were analyzed. Initial results indicated that `Jackson Wonder' and `Early Thorogreen' are capable of surviving the 42C heat shock, but `Fordhook 1072' is not. In the second assay, we measured electrical conductivity of a solution containing hypocotyl sections following incubation at various temperatures (R1). Tissue samples then were boiled and conductivity was measured again (R2). The ratios of R1/R2 × 100 were determined as percent injury. Preliminary data suggests that `Jackson Wonder' is more heat-tolerant in this assay than `Fordhook 1072'. Subsequent experiments will analyze the induction of specific heat shock proteins as a function of cultivar-specific heat tolerance.

Free access

xanthophyll) led to decreased membrane permeability and protected the plants against heat damage ( Havaux et al., 1996 ). The association of antioxidant effects of carotenoids with improved heat tolerance in cool-season grass species is not yet well

Open Access