Search Results

You are looking at 1 - 10 of 69 items for :

  • halosulfuron x
Clear All

( Anonymous, 2015a ; Jhala et al., 2013 ). Total seasonal rates for perennial crops can range from 50 to 150 g a.i./ha. Halosulfuron is also registered to control perennial nutsedges and broadleaf weeds in perennial crops including pecan, with total seasonal

Free access

costs, and/or insufficient weed control ( Brown and Masiunas, 2002 ). Herbicides registered for use in midwest U.S. pumpkin production include bensulide, carfentrazone-ethyl, clethodim, clomazone, ethalfluralin, halosulfuron, naptalam, sethoxydim, and

Free access

Gioia et al., 2016 ), the addition of a halosulfuron enhanced weed control ( Guo et al., 2017 ). Another ASD study found that using wheat ( Triticum aestivum ) bran as a carbon source reduced yellow nutsedge tuber sprouting and reproduction, but the

Open Access

based on plant injury and yield ( Brandenberger et al., 2005 ). Halosulfuron applied at any rate injured watermelon; however, in most cases plants recovered by 5–7 WAT. This also occurred when halosulfuron was tank-mixed with other PRE herbicides

Full access

Experiments were conducted in the last 3 years to evaluate the safety and efficacy of halosulfuron (Sandea 75WG) application under the plastic mulch within 7 days of transplanting tomato. In 2003, tomato plants were transplanted daily from day 0 through 7 after halosulfuron 0.051 kg a.i./ha application. Plant survival and height were collected. Tomato plants survived all dates of transplanting treatments. Plant height indicated that plants transplanted early were taller than those transplanted late, only because they had more time to establish and grow in the field. In 2004, tomatoes were set on a 2-day interval from day 0 through 10 after halosulfuron application. Halosulfuron 0.025 or 0.052 kg a.i./ha had no effect on plant height or yield. In 2005, an experiment was initiated to determine whether addition of trifluralin to halosulfuron under the plastic mulch will improve grass control and remain safe to tomatoes. Halosulfuron at 0.025, 0.052, and 0.1 kg a.i./ha, was applied alone and combined with trifluralin 0.63 kg a.i./ha. All treatments were applied under the plastic mulch. Tomato plants were transplanted at 6 days after application (DBT) and 0 DBT. Halosulfuron 0.1 kg ai/ha resulted in slight stunting and yield reduction of tomato, whether applied at 6 or 0DBT. However, this stunting was not statistically significant. Trifluralin didn't affect tomato yield at 6DBT and significantly increased yields at 0DBT for 0.052 and 0.1 ka a.i./ha halosulfuron rates. Trifluralin reduced grass biomass but resulted in an increase of nightshade biomass. Halosulfuron was determined to be very safe on tomato growth and yield, even if tomato was transplanted on the same day of application. Trifluralin also was found to have little or no effect on tomato growth or yield, and appears to have a potential use as an herbicide for under plastic application in tomato production.

Free access

Halosulfuron (Sandea 75WG) is labeled for pre- or posttransplant use in tomato, cucumber, cantaloupe, among other vegetable crops. For pretransplant usage, the label specifies a 7-day waiting period after halosulfuron application under the plastic mulch before transplanting tomatoes. This period may be too long for growers who are busy in the spring with planting and pesticide sprays while on a race with the constantly changing climate of early spring. Experiments were conducted in the last 2 years to determine whether transplanting tomato within 7 days of halosulfuron application had any deleterious effects on tomato. In 2003, tomatoes were transplanted daily from day 0 through 7. Plant survival and height were collected. Tomato plants survived all dates of transplanting treatments. Plant height indicated that plants transplanted early were taller than those transplanted late, only because they had more time to establish and grow in the field. There was no adverse effect to tomato growth. In 2004, tomatoes were set on a 2-day interval from day 0 through 10 after halosulfuron application under the plastic mulch. Plant height, visual rating, % early blight infection, and yields were collected. A severe early blight infection confounded the results of herbicide applications. Still, it was clear that halosulfuron 0.026 or 0.051 kg a.i./ha had no effect on plant height or visual rating. Yields were not statistically different from those of the control, when the effect of early blight was factored out.

Free access

Halosulfuron is a proposed alternative to methyl bromide for managing nutsedges (Cyperus spp.) in several vegetable crops, including cucurbits. Field studies were conducted to evaluate the crop sensitivity to halosulfuron in a spring squash (Cucurbita pepo L.)—fall cucumber (Cucumis sativus L.) rotation from 2000 to 2002. Treatments included application of halosulfuron to the soil surface after forming the bed, but before laying mulch (halosulfuron-PRE), halosulfuron applied through drip irrigation (halosulfuron-DRIP) after forming bed and laying mulch, metham applied through drip irrigation after forming bed and laying mulch, a nontreated control with mulch, and nontreated control without mulch. Each treatment was applied to both direct seeded and transplanted zucchini squash. Halosulfuron treatments reduced squash plant diameter relative to metham, however plant diameters in halosulfuron-PRE (transplant and direct seed) and halosulfuron-DRIP (transplant) treatments were not different from the nontreated control. Halosulfuron-PRE delayed squash fruit production relative to the mulched nontreated control. However, application of halosulfuron-PRE and halosulfuron-DRIP did not reduce squash yield at the conclusion of the season, relative to the nontreated control. Cucumbers were transplanted and direct seeded into previous squash plots and received either an application of halosulfuron-DRIP, or were not treated. Differences in cucumber yields were not detected with second crop treatments. Cucumbers appear to have adequate tolerance to halosulfuron, making it a potential replacement for methyl bromide for nutsedge control. Suppression of early season squash growth by halosulfuron may hinder the adoption of halosulfuron as a methyl bromide alternative for squash.

Free access

Halosulfuron is an alternative to methyl bromide for managing nutsedges (Cyperus spp.) in several vegetable crops. Field studies were conducted to evaluate eggplant growth and yield when halosulfuron was applied through drip-irrigation before transplant at four rates (0, 26, 39, or 52 g·ha–1 a.i.) or following transplant (26 g·ha–1 applied 1, 2, or 3 weeks after transplant) in spring and fall crops in 2002 and 2003. Inverse linear relationships were observed between rate of halosulfuron and eggplant growth and rate of halosulfuron and eggplant yield. Halosulfuron at 52 g·ha–1 reduced eggplant growth (crop height and canopy width) 19% to 22%. Eggplant fruit biomass at the first harvest was reduced 37% to 63% by halosulfuron applied before transplant. Eggplant was capable of recovering from the initial injury and there was no effect of halosulfuron rate on fruit biomass at the final harvest. Total season fruit biomass was reduced ≤4% from halosulfuron at 39 g·ha–1, while halosulfuron at 52 g·ha–1 reduced fruit biomass 33%. Delay in application of halosulfuron to 3 weeks after transplant (WAT) resulted in ≤7% reduction in fruit biomass and number for the entire season. When halosulfuron was applied 1 WAT, fruit biomass at the first two harvests was reduced >33%, however total season harvest from this treatment was >99% of the yield from the nontreated control. This preliminary study indicates that halosulfuron injected through drip tape may have the potential to assist in the replacement of methyl bromide for nutsedge management in eggplant. However, there are many issues that must be addressed and studied before adopting this practice in eggplant.

Free access

in Michigan are treated with one or more PS II inhibitors each year ( Zandstra, 2011 ). Several other preemergence herbicides have been registered for asparagus in recent years, including flumioxazin, halosulfuron, S -metolachlor, mesotrione

Full access

One-half (18 g·ha-1 a.i.) and three-fourths (27 g·ha-1 a.i.) rates of halosulfuron (Manage®, MON 12051) were combined with adjuvants and evaluated for effectiveness in controlling purple nutsedge (Cyperus rotundus L.) and for phytotoxic responses exhibited by two kinds of container-grown ornamental plants. Adjuvants included X-77®, Scoil®, Sun-It II®, Action “99”®, and Agri-Dex®. By 8 weeks after treatment (WAT), halosulfuron combined with X-77®, Agri-Dex®, or Action “99”® at the lower halosulfuron rate provided <90% purple nutsedge suppression. In contrast, Sun-It II® provided 100% control when combined with the higher halosulfuron rate. Nutsedge control persisted into the following growing season and halosulfuron combined with either Scoil® or Sun-It II® provided >97% suppression of nutsedge tuber production. Growth of liriope [Liriope muscari (Decne.) Bailey `Big Blue'] was not inhibited by Scoil® or Sun-It II® adjuvants in combination with the low rate of halosulfuron. However, regardless of the rate of halosulfuron or adjuvant used, initial foliar chlorosis was observed in both daylily (Hemerocallis sp. L. `Stella d'Oro') and liriope. All liriope receiving halosulfuron with X-77®, Scoil®, or Sun-It II® adjuvants recovered normal foliage by 8 WAT. By contrast, at 8 WAT some daylily still maintained a degree of foliar discoloration. In addition to chlorosis, all treatments reduced flower number in daylilies. The number of flower scapes produced by liriope was not affected by halosulfuron when in combination with either Sun-It II® or Scoil®. The high rate of halosulfuron combined with X-77® or Action “99”® improved control of purple nutsedge. However, this rate inhibited growth of both species, daylily flower numbers, and scape numbers of liriope, regardless of adjuvant. Chemical names used: halosulfuron (Manage®, MON 12051, methyl 5-{[(4,6-dimethyl-2-pyrimidinyl) amino] carbonyl-aminosulfonyl}-3-chloro-1-methyl-1-H-pyrozole-4-carboxylate); proprietary blends of 100% methylated seed oil (Scoil® and Sun-It II®); proprietary blend of 99% polyalkyleneoxide modified heptamethyl trisiloxane and nonionic surfactants (Action “99”®); alkylarylpolyoxyethylene, alkylpolyoxyethelene, fatty acids, glycols, dimethylpolysiloxane, and isopropanol (X-77®); proprietary blend of 83% paraffin-based petroleum oil, with 17% polyoxyethylate polyol fatty acid ester and polyol fatty ester as nonionic surfactants (Agri-Dex®)

Free access