Search Results

You are looking at 1 - 10 of 361 items for :

  • growth retardant x
Clear All

A common cultural practice in greenhouse production is to apply plant growth retardants (PGRs) to produce uniform, compact, and marketable plants. Plant growth retardants can be applied in several ways, including foliar sprays, substrate drenches

Full access

, diameter, and dry weight, where GI = [height + (diameter 1 + diameter 2)/2 + dry weight]/3. Models represent plants grown with or without a plant growth retardant (PGR) drench of 4 mg (1.4 × 10 −4 oz) a.i. paclobutrazol per pot. The intersection of the two

Full access

growth retardants are frequently used in bedding-plant production to restrict growth of plants, as they can be easily applied without adversely affecting other crops in the same environment. Plant growth retardants are often applied as foliar sprays, but

Full access

conditions such as temperature and light levels ( Moe et al., 1992b ). Fig. 1. Poinsettia ‘Classic Red’ height response to plant growth retardant (PGR) applications (spray with a mixture of daminozide and chlormequat chloride or drench with paclobutrazol) and

Free access

107 POSTER SESSION (Abstr. 665–676) Growth and Development–Floriculture

Free access

Abstract

The effects of growth retardant succinic acid 2,2-dimethylhydrazide (SADH) on tomato transplants were evaluated in 9 field experiments. Two or more applications of 5,000 ppm of SADH at the seedling stage offers promise in scheduling tomato harvest by decreasing early yield.

Open Access

66 ORAL SESSION 15 (Abstr. 478–484) Plant Growth Regulators/Marketing–Floriculture/Foliage

Free access

Bare-root, mature, hybrid Phalaenopsis seedlings were dipped in one of three growth retardant solutions for 5 seconds or sprayed with a growth retardant 4 weeks following planting during inflorescence elongation. Dipping the entire plant in daminozide (2500, 5000, or 7500 mg·liter-1) before planting delayed flowering by 5-13 days, whereas foliar applications had no effect. Paclobutrazol (50, 100, 200, or 400 mg·liter-1) or uniconazole (25, 50, 100, or 200 mg·liter-1) dips did not affect the bloom date but effectively restricted inflorescence growth below the first flower (stalk). Increasing concentrations produced progressively less growth. Foliarly applied retardant treatments were less effective than dipping. Flower size, flower count, and stalk thickness were unaffected by treatments. Dipping in high concentrations of paclobutrazol (200 or 400 mg·liter-1) or uniconazole (100 or 200 mg·liter-1) caused plants to produce small, thick leaves. During the second bloom season, inflorescence emergence and bloom date were progressively delayed by increasing concentrations of paclobutrazol and uniconazole. Neither retardant affected flower count or size. Foliarly applied daminozide increased stalk length. In another experiment, foliar paclobutrazol treatment restricted stalk growth more effectively when sprayed before inflorescence emergence. Its effect progressively decreased when treatment was delayed. Paclobutrazol concentrations from 125 to 500 mg·liter-1 were equally effective in limiting stalk elongation when applied to the foliage. Chemical names used: butanedioic acid mono (2,2-dimethylhydrazide) (daminozide); (E)-1- (p -chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol(uniconazole); (2 RS, 3 RS) -1-(4-chlorophenyl)-4,4-dimethyl-2-(1 H- 1,2,4-triazol-1-yl) pentan-3-ol (paclobutrazol).

Free access

Tabletop Christmas tree growers whose greenhouse-grown conifers have undesirable shoot growth may alleviate this problem by applying plant growth retardants (PGRs). Some of the most common PGRs in the horticulture industry were evaluated to determine their effectiveness in controlling plant height: ancymidol at 100 μL·L-1 (ppm), daminozide at 5000 μL·L-1, paclobutrazol at 60 μL·L-1, chlormequat at 1500 μL·L-1, uniconazole at 15 μL·L-1, and ethephon at 500 μL·L-1 compared to a nontreated control. The following conifer species were used: colorado blue spruce (Picea pungens), black hills spruce (P. glauca var. densata), serbian spruce (P. omorika), noble fir (Abies procera), grand fir (A. grandis), fraser fir (A. fraseri), concolor fir (A. concolor), arborvitae (Thuja occidentalis), port orford cedar (Chamaecyparis lawsoniana), and douglas-fir (Pseudotsuga menziesii). Chlormequat was the only PGR that caused phytotoxicity and damage to the foliage was minimal. Noble fir, douglas-fir, colorado blue spruce, and arborvitae were unaffected by any PGR treatment. Daminozide reduced growth of port orford cedar and concolor fir; uniconazole reduced growth of black hills spruce and serbian spruce; paclobutrazol reduced growth of fraser fir; and ethephon reduced growth of grand fir.

Full access

Chemical plant growth retardant (PGR) treatments (mg·liter–1) were applied as foliar sprays to three zonal geranium cultivars: chlormequat at 1500, applied two, three, and four times, a combination of chlormequat at 750 and daminozide at 1250, applied one and two times, and paclobutrazol applied once at 5, 10, 20, and 30; twice at 5, 10, and 15; and three times at 5, plus an untreated control. Two paclobutrazol drench treatments at 0.1 and 0.25 mg a.i. per pot were also applied. The results of the PGR applications were significant at the cultivar × treatment interaction for leaf canopy height and plant diameter. Paclobutrazol rates of 10 to 15 mg·liter–1 resulted in acceptable height control for `Medallion Dark Red' and `Aurora'. `Pink Satisfaction' is a less vigorous cultivar and lower paclobutrazol rates of 5 to 10 mg·liter–1 were more suitable. When the total concentration of the single and multiple applications were compared, no additional height control was realized with the multiple applications of paclobutrazol.

Free access