Search Results

You are looking at 1 - 10 of 1,230 items for :

  • dry matter yield x
Clear All
Free access

Arsène Similien, Dennis A. Shannon, C. Wesley Wood, Edzard van Santen, Nirmal Joshee and Wheeler G. Foshee

regular farming practices; and 2) determine growing conditions needed to optimize total dry matter yield. Factors tested were light, water, and nutrients. The effect of the growing conditions tested on flavonoid content in skullcap will be reported

Free access

Steven M. Todd, Van-Den Truong, Kenneth V. Pecota and G. Craig Yencho

. Description of five female and five male sweetpotato parents crossed in a factorial crossing block to estimate combining abilities for yield, anthocyanins, and dry matter related traits. Field trials. Twenty-five offspring of each full-sib family were

Full access

Laban K. Rutto, Myong-Sook Ansari and Michael Brandt

agronomic focus on leaf/shoot yield, or for root biomass as raw material for alternative medicine. Plant biochemistry, biomass yield, and dry matter allocation can be manipulated by adjusting the quantity and timing of nutrient supply. For example

Free access

Y. Saranga, D. Zamir, A. Marani and J. Rudich

, Lycopersicon peruvianum ; RD, relative total dry matter; RY, relative total yield. 1 Deceased May 1986. This research was conducted within the framework of the Cooperative Arid Land Agricultural Research—Egypt-USA-Israel (CALAR), funded by the U.S. Agency for

Full access

Fekadu Gurmu, Shimelis Hussein and Mark Laing

reported that flesh color, skin color, percent dry weight, percent crude starch, resistance to root-knot nematode, and vine length had high heritabilities. Fresh storage root yield and SPVD had lower h 2 , which was expected because these traits are highly

Free access

Steven J. Guldan, Charles A. Martin, Jose Cueto-Wong and Robert L. Steiner

Five legumes [hairy vetch (Vicia villosa Roth.), barrel medic (Medicago truncatula Gaerth.), alfalfa (Medicago sativa L.), black lentil (Lens culinaris Medik.), and red clover (Trifolium pratense L.)] were interseeded into sweet corn (Zea mays L.) at last cultivation when sweet corn was at about the V9 (early) or blister (late) stage. The effect of legume interseeding on sweet corn yield, and late-season dry-matter and N yields of aboveground portions of the legumes was determined. Sweet corn yield was not affected by legume interseeding. In 1993, legume dry-matter yields were 1420 kg·ha–1 interseeded early and 852 kg·ha–1 interseeded late. Nitrogen yields were 49 kg·ha–1 interseeded early and 33 kg·ha–1 interseeded late. In 1994, dry-matter yields were 2760 kg·ha–1 interseeded early and 1600 kg·ha–1 interseeded late. Nitrogen yields were 83 kg·ha–1 interseeded early and 50 kg·ha–1 interseeded late. In 1993, barrel medic was the highest-yielding legume with dry matter at 2420 kg·ha–1 and N at 72 kg·ha–1 interseeded early, while red clover yielded the lowest with dry matter at 340 kg·ha–1 and N at 12 kg·ha–1 interseeded late. In 1994, dry-matter and N yields ranged from 4500 and 131 kg·ha–1, respectively, for early interseeded barrel medic to 594 kg·ha–1 and 16 kg·ha–1, respectively, for late interseeded red clover.

Free access

Kirk D. Larson, Douglas V. Shaw and Jerry Sterrett

Three preplant soil fumigation treatments were applied to a strawberry fruit production field in Summer 1993: 1) a mixture of 67 methyl bromide: 33 chloropicrin (wt/wt, 392 kg·ha–1) (MBC); 2) chloropicrin (trichloronitromethane, 336 kg·ha–1) followed by metam sodium (935 liters·ha–1) CMS); and 3) nonfumigation (NF). Bare-rooted `Camarosa' strawberry plants were established in each treatment on 1 Nov. in annual hill culture. Plant mortality was <1%; thus, differences in growth and productivity among treatments were due to sublethal effects of competitive soil organisms. Fruit yields were recorded weekly from 14 Jan. to 23 May 1994. For the NF treatment, early season (January–March), late season (April–May), and total yields were 86%, 69%, and 72%, respectively, of those of the MBC treatment. Early season yields were greatest for the MBC treatment, but late and total yields were greatest for the CMS treatment. From Jan. through May 1994, 20 plants were destructively harvested from each treatment at about monthly intervals for determination of leaf (LDW), crown (CDW), and root dry weight (RDW). For a given date, LDW, CDW, and RDW of plants in the MBC and CMS treatments were greater than those of the NF plants. From January to March, plants in the NF treatment allocated a proportionally greater amount of dry matter to roots, and proportionally less dry matter to crowns and leaves than fumigated plants. In April and May, root: shoot ratios were similar for all three treatments. These data demonstrate the marked influence of soil fumigation treatment on yield and dry matter partitioning of strawberry, and suggest that combinations of chloropicrin and metam sodium may be a viable, albeit expensive, alternative to fumigation with methyl bromide.

Free access

Carl J. Rosen and Cindy B.S. Tongn

Two on-farm field studies were conducted in 1996 and repeated in 1997 to determine the effects of soil amendments and scape (flower stalk) removal on yield, dry matter partitioning, and storage quality of hardneck garlic (Allium sativum L.). One study site was on a loamy sand soil with low organic matter and fertility and the other site was on a sandy loam soil with high organic matter and fertility. Soil amendment treatments tested at both sites were: 1) no amendment, 2) composted manure, and 3) inorganic fertilizer according to soil test recommendations. A fourth treatment, dried, composted turkey-manure-based fertilizer, was included at the low organic matter site. Scapes were removed at the curled stage from plants in half of the harvest rows. Scapes from the remainder of the harvest row plants were allowed to mature until harvest. In 1997, bulbs from each treatment were stored at 0 to 3 °C or 19 to 21 °C for 6 months. Soil amendment treatments had no effect on total garlic bulb yield, dry mass partitioning, or stored bulb weight loss at the sandy loam, high organic matter site. Manure compost, fertilizer, and composted turkey manure soil amendments reduced the yield of smaller bulbs compared with the control at the loamy sand, low organic matter site. The proportion of bulbs >5 cm was highest with the manure compost treatment. At the low organic matter site, scape removal resulted in a 15% increase in bulb yield and an increase in bulb size compared with leaving scapes on until harvest (P = 0.05). At the high organic matter site, scape removal increased bulb yield by 5% (P = 0.10). Scape removal increased dry matter partitioning to the bulbs, but had no effect on total (scape + shoot + bulb) aboveground dry matter production. The increase in bulb dry mass when scapes were removed was offset by an increase in scape dry mass when scapes were left on. Bulb weight loss in storage was less at 0 to 3 °C than 19 to 21 °C. Soil amendments only affected bulb storage quality at the loamy sand, low soil organic matter site. The effect of scape removal on bulb weight loss was nonsignificant at either location.

Free access

Wayne F. Whitehead and Bharat P. Singh

The objective of this study was to determine if winter legume or grain cover could support net photosynthesis (Pn) and plant dry matter production comparable to recommended rate of synthetic N. The following winter/spring fertility treatments were applied: 1) 0 N winter/0 N spring, 2) 0 N winter/90 kg·ha–1 N spring, 3) 0 N winter/180 kg·ha–1 N spring, 4) 0 N winter+abruzi rye/0 N spring, 5) 0 N winter+hairy vetch/0 N spring, and 6) 0 N winter+crimson clover/0 N spring. `Mountain Pride' tomato was planted in all plots in spring. Plant dry weight and Pn were measured at flowering, fruiting and prior to senescence. The highest Pn (22.78 μmol CO2/m2 per s) and leaf dry weight (115.2 g/plant) were obtained at fruiting, while highest branch dry weight (194.5 g/plant) occurred prior to senescence. There was significant increase in plant dry weight during reproductive growth phase. Tomato plants receiving supplemental N from crimson clover or hairy vetch had Pn and plant dry weight comparable to those receiving synthetic N. The results of this study indicated that legume cover crops were as effective as commercial N fertilizer for supporting photosynthesis and vegetative growth of tomato.

Free access

Tadahisa Higashide and Ep Heuvelink

related to an increase in harvest index rather than total biomass production. However, Hay (1995) reported that an increase in yield of maize ( Zea mays ) by breeding was not related to harvest index but to total dry matter production. Tollenaar and