Search Results

You are looking at 1 - 10 of 172 items for :

  • animal waste x
Clear All

compost made from different feedstock relative to superphosphate are available for spent mushroom compost (100%), animal manures (90%), sewage sludge (85%), source-separated food waste (75%), and yard waste (60%) ( Prasad, 2009b ). However, generally for

Full access

masses, current usage, and potential market for composts and other wastes in Florida (FDEP, 2007a). Food processing wastes. Food processing wastes can come from plant and animal materials. The Florida food processing industry is dominated by the

Full access
Authors: and

Abstract

Proper management of organic wastes such as crop residues, animal manures, and sewage sludges on land is essential for protecting agricultural soils from wind and water erosion, and for preventing nutrient losses through runoff. Efficient and effective use of these materials also provides one of the best means we have for maintaining soil productivity by recycling plant nutrients and by improving soil physical properties. The beneficial effects of organic wastes on soil physical properties are widely known (1, 21) as evidenced by increased water infiltration, water-holding capacity, water content, aeration and permeability, soil aggregation and rooting depth, by decreased soil crusting and runoff, and by lower bulk density.

Open Access
Author:

There is world-wide interest in disposal technologies suitable for handling farm wastes. The Northern Ireland mushroom industry generates 200,000 tonnes/year of “spent” mushroom compost waste containing excess salts (P, K, Ca) and heavy metals. Its disposal by landspreading is restricted by EU, U.K. legislation. Farmers in Europe and the United States use this waste as a soil nutrient improver, but such operations are deleterious to the environment owing to microbial loading of soil and the release of human and animal pathogens. An ideal option is to reduce salt levels and pathogen content before granulating the waste into fertilizers. Electroremediation is a novel, in situ environmental technology which utilises low voltage electrical fields to remove salts or metals in contaminated soil sites. We developed electroremediation methods for the removal of excessive salts from `spent' mushroom compost or from soils contaminated with this waste. Electroremediation of excess salts / heavy metals from the horticultural waste was carried out in an anti-corrosive electrolysis tank with a built-in central holding bay for the waste material. A thin layer of charged fluid (rain water, pH 5.5; adjusted with 0.005 n HCl) maintained over the mushroom compost waste achieved the removal of salts when electrical fields ranged from 20 to 200 V were applied across electrodes (spacing 1.5 m apart) in our investigations. Electrode saturation by H+ or OH- and thermal/alkaline front build up were minimised by flushing with cooled (15 °C) fresh rainwater circulated via peristaltic pumps. The above prototype is useful for nutrient tailoring of spent compost waste in bagged compost prior to producing commercially viable granulated fertilizers from wastes.

Free access

The EU Regional Draft Waste Management Plan (1999-2004) identified pig slurry (501,590 tonnes), poultry manure (217,110 tonnes) and spent mushroom compost (221,665 tonnes) as the main contributors to the 3.5 million tonnes of waste generated annually in Ireland. Current legislative restrictions prevent pig wastes from intensive pig units and horticultural wastes mainly spent compost produced in mushroom farms being disposed via landspreading due to pollution threat from nutrient run-off and the health hazards due to animal and human risk pathogen contents in wastes. Composting is a world-wide popular option for environmentally sustainable means of recycling farm wastes. In Ireland, profitable conversion of farm wastes such as pig slurry solids and spent mushroom compost has not yet been fully explored for their economic viability as `green' fertilizers. In this study, we produced pelleted formulations of the composted pig waste solids, (20%) blended with spent mushroom compost (26%), turkey litter (26%) cocoa husks (18%) and shredded paper (10%) to an environmentally safe, organic-based fertiliser resulting in N:P:K = 3:5:10, ideally suitable for use on amenity grassland such as golf course fairways and greens in Ireland, wherein spring and summer fertilizers with slow release of nutrients would aid an even growth of grass. We describe the composting methods used, processing technology developed and additional amendments such as dried blood or feather meal that were used during the pelletisation operation yielding specific N:P:K target ratios from the pig manure and spent compost wastes. We also report on the rigorous microbiological tests carried out throughout the composting phase and ascertained the pathogen-free status of the final pelletised fertilser products.

Free access
Authors: and

Abstract

The agri-business industry is faced with an unprecedented demand for its product – food. It has been estimated that the world food supply must be doubled just to feed the present population. There is little doubt that the technology exists to do this, given the inputs of water (if available), fertilizer, pesticides and increasing the area under cultivation. Many are seriously questioning whether our ecosystem can continue to tolerate the effects of intensive agriculture. These effects can include erosion, contamination of water supplies by sediment, fertilizer nutrients, pesticides and animal waste, and food processing wastes. Of course, other sectors of the economy also are over-stressing the environment, as witness the problems in the transportation, oil and electrical power industries.

Open Access
Author:

Vermicomposting is the process of fragmenting organic wastes with certain species of earthworms. A variety of vermicomposts are being marketed as fertilizer materials for turfgrass management, particularly in the golf course industry. In 2002 and 2003, field trials were conducted on established kentucky bluegrass (Poa pratensis) in Columbus, Ohio, to evaluate the use of vermicomposted animal, food, paper, and turfgrass clipping waste materials as a turfgrass fertilizer under home lawn maintenance conditions. Visual quality of the plots was significantly higher for 2 weeks after application of paper vermicompost, regardless of application rate. Few other differences in either turfgrass visual quality of clipping yields were observed during a 6-week period after application, regardless of application rate or source of vermicompost. Based on the results of these studies, the use of vermicompost as a fertilizer material on established turfgrass is not warranted.

Full access

North Carolina is a leading poultry producer in the United States. Thus, much waste by-product also is produced and must be handled in an environmentally responsible way. Using poultry and similar waste products as a fertilizer source for vegetables, such as sweetpotatoes, might serve as a viable use option. Our purpose was to determine the effectiveness of animal wastes and sludges as nutrient sources for sweetpotatoes. The effects of municipal solid waste, composted litter, fresh litter, and synthetic fertilizers were compared for their effects on yield and quality of `Regal' and `Beauregard' sweetpotato varieties. The test was planted as a split-plot randomized complete-block design with each treatment replicated four times. Planting was 3 June, and harvest was 27 Sept. 1994. Yields were similar when fertilized with either organic or synthetic nutrient sources. Root quality was excellent, regardless of fertilizer, because few culls resulted, and there were no differences between treatments. Sweetpotatoes can be successfully grown with various organic nutrient sources without affecting quality or yield and might be marketed as “organically grown” produce. This label may command a higher market price than sweetpotatoes grown traditionally with synthetic nutrient sources.

Free access

Commercial citrus (Citrus sp.) groves in Florida use an average of 150 lb/acre (168 kg·ha-1) of elemental nitrogen (N) per year. There are about 853,000 acres (345,000 ha) of commercial citrus requiring about 63,975 tons (62,652 t) of N. At an average analysis of 12% N, about 533,125 tons (483,811 t) of blended nitrogenous fertilizers are applied to citrus annually. To meet this annual N demand from compost, it would be necessary to produce 3,198,750 tons (2,901,906 t) of 2% N compost. The market for high-quality compost products in Florida is far greater than the current or projected production capacity of the state. As long as the cost benefits of compost are clear to citrus growers, demand will always exceed supply. Not all composts are equal in their nutrient availability. The best composts for use as fertilizers are derived from sewage sludge or biosolids, municipal solid waste and sludge, food waste, and/or animal manure combined with a bulking agent such as sawdust or wood chips. Composts made from wood waste as their only feedstock contain large amounts of lignin and cellulose to break down within a reasonable period to directly offset chemical fertilizers. Ultimately, they will mineralize in the soil and provide all of the benefits described earlier, but their rates of availability are in years rather than months, like the other composts.

Full access

Castings from earthworm (Eisenia fetida) when fed on sheep (SC), cow (CC), or horse (HC) manures were evaluated on growth of Dendranthema `Miramar' cuttings. Castings were produced placing 100 L of manure and 1 kg of earthworms in a 212-L plastic container for each animal manure. Mixtures of peat moss and castings at 0:1, 1:3, 1:1, or 3:1 were evaluated for each animal waste with 100% peat and Sunshine Mix 1 used as the controls. Each media treatment was replicated eight times with each replication consisting of four cuttings per 1-L (15-cm diameter) plastic container. Leachate pH and nutrient content increased as the amount of castings in the media increased. Plant growth index, leaf area, and number of flowers were greatest in media consisting of SC at 1:1 and 3:1 peat:castings. Similar results for growth index and leaf area were obtained with CC at 3:1 and 1:1, respectively. Increasing the amount of castings in the substrate reduced the plant dry weight and increased shrinkage of the media.

Free access