Search Results

You are looking at 1 - 10 of 176 items for :

  • air-filled porosity x
  • Refine by Access: All x
Clear All
Free access

Suzanne E. Allaire, Jean Caron, Isabelle Duchesne, Léon-Étienne Parent, and Jacques-André Rioux

A 2-year experiment with Prunus ×cistena sp. was conducted in pots using seven substrates composed of various proportions of primarily peat, compost and bark. Peat substrates significantly affected root and shoot dry weight. Water desorption characteristics and saturated hydraulic conductivity were measured in situ to estimate the pore tortuosity factor and the relative gas diffusion coefficient. The pH, electrical conductivity, C/N ratio, total and hydrolyzable N, as well as NO3 --N and NH4 +-N in solution were also measured. Estimates of the physical properties suggest that a lack of aeration limited plant growth. Plant growth was significantly correlated with both the gas relative diffusivity and the pore tortuosity factor. Among the chemical factors, pH and soil nitrate level were also correlated with plant growth. No significant correlation was found between plant growth and air-filled porosity or any other measured chemical properties. This study indicates that an index of gas-exchange dynamics could be a useful complementary diagnostic tool to guide substrate manufacturing.

Open access

C. I. Lee, J. L. Paul, and W. P. Hackett

Abstract

Root regeneration from root cuttings of both difficult-to-transplant Pistacia chinensis and moderately easy-to-transplant Liquidambar styraciflua was studied in a sphagnum peat medium varying from 0-100% Ca saturation and from 0-50% air filled porosity. Maximum root regeneration of Pistacia root cuttings was obtained at 75% Ca saturation and 30% and 40% air filled porosity, whereas Liquidambar root cuttings regenerated roots best at 25% Ca saturation and at 20% to 40% air filled porosity. Indolebutyric acid applied to the root cuttings greatly increased root-regenerating potential of Pistacia root cuttings but did not affect the optimum Ca and aeration requirement(s). Similarly, indolebutyric acid treatment greatly promoted the root-regeneration potential of Liquidambar root cuttings. Satisfactory root-regenerating conditions of both Ca saturation and air filled porosity for Liquidambar root cuttings were a little broadened by indolebutyric acid (IBA) application.

Pistacia bare root seedlings also required high levels of Ca saturation and aeration for optimum root regeneration. Considerably greater numbers of roots were regenerated in peat having 75% Ca saturation and 20% air filled porosity than in peat having 0% Ca saturation and 5% air filled porosity. Root regeneration was not improved by increasing only the air filled porosity when Ca was low.

Free access

Patrice Cannavo, Houda Hafdhi, and Jean-Charles Michel

an extensive list of abiotic factors that influence root growth in containers in their review. Among them, the physical properties of growing substrate are of great importance. The air-filled porosity and the water retention capacity and availability

Free access

George Gizas and Dimitrios Savvas

size range and distribution. Furthermore, the actual container capacity of a containerized substrate, and thus the air-filled porosity and the water-holding capacity, depend on container height ( Fonteno, 1996 ; Milks et al., 1989b ). Hence, the

Open access

J. L. Paul and C. I. Lee

Abstract

Chrysanthemum morifolium cv. Brilliant Anne was grown in 13 different media under frequent irrigation such that all media were nominally at container capacity. Media were selected to represent a range in airfilled porosity (0–20%) at container capacity with a depth of 12 cm. Substantial addition of organic amendment (40–90% v/v) improved aeration in a poorly aggregated loam and in two sands. Peat plus vermiculite had the best aeration of all media. Thirty day top yields were related to aeration properties of the media measured at container capacity. A value of 10–15% air-filled porosity was generally related to best growth. Oxygen diffusion rate (ODR) for the medium profile provided a better correlation with plant growth than air-filled porosity. A profile ODR of 45g O2 × 10‒8 cm-2 min-1 and above gave best growth.

Full access

Juha Heiskanen

Two commercially produced growth media made of light, low humified sphagnum peat, were used to determine how filling into containers affects the particle size distribution and water retention characteristics of peat. It was shown that the filling procedure used broke up the peat particles, resulting in a significant increase in the proportion of particles < 1 mm (g·g-1). Due to the increased proportion of fine particles, the water retention of the peat media increased under wet conditions (-0.1 kPa matric potential), while the air-filled porosity decreased to nearly 0. Also, at matric potentials lower than -0.1 kPa, the reduction in air-filled porosity may restrict aeration and availability of oxygen to roots, thus reducing growth of plants.

Free access

Daniel C. Bowman, Richard Y. Evans, and Linda L. Dodge

A study was conducted to determine the potential for using ground automobile tires as a container medium amendment. Rooted cuttings of chrysanthemum [Dendranthema × grandiflorum (Ramat.) Kitamura] were planted in 1.56-liter pots containing 1 sand:2 sawdust (v/v) or media in which coarsely or finely ground particles of rubber substituted for 33%, 67%, or 100% of the sawdust. Amendment with the coarse material decreased total porosity and container capacity and increased air-filled porosity and bulk density relative to the sawdust control. Amending the medium with the fine material did not appreciably alter total porosity, container capacity, or bulk density, but did increase air-filled porosity. Plant height, fresh weight, dry weight, and number of open flowers were reduced significantly in rubber-amended media compared to sawdust controls. Rubber amendment reduced shoot tissue concentrations of N, P, K, Ca, Mg, and Cu, but increased Zn as much as 74-fold over control values. There was no accumulation of other heavy metals (Cd, Cr, Ni, Pb) or Na in the tissue due to rubber amendment. This study demonstrates that ground tires might be used as a component of container media in the production of greenhouse chrysanthemums. However, growth reductions and the potential for Zn toxicity may limit the usefulness of ground tires as a substitute for conventional organic amendments.

Full access

S.B. Wilson, P.J. Stoffella, and D.A. Graetz

Growth of golden shrimp plant (Pachystachys lutea Nees.) transplants was evaluated in media containing 0%, 25%, 50%, 75%, or 100% compost derived from biosolids and yard trimmings. A commercial coir- or peat-based media was amended with compost. As compost composition in the peat or coir-based media increased from 0% to 100%, carbon/nitrogen ratios decreased; and media stability, nitrogen mobilization, pH, and electrical conductivity increased. Bulk density, particle density, air-filled porosity, container capacity, and total porosity increased as more compost was added to either peat- or coir-based media. Plants grown in media with high volumes of compost (75% or 100%) had less leaf area and lower shoot and root dry weight compared to the controls (no compost). Regardless of percentage of compost composition in either peat or coir-based media, all plants were considered marketable after 8 weeks.

Free access

F. M. Jeneidi and C. J. Starbuck

The physical characteristics of a container growing medium containing 2 oak sawdust composted with poultry manure: 1 vermiculite: 1 perlite were compared with those of a similar medium containing sphagnum peat rather than compost. Both media were amended with inorganic nutrients based on laboratory analysis to make them nutritionally comparable and with AquaGro wetting agent at 800 g·m–3. Moisture release characteristics of the media were evaluated using tension cups in which desorption at 5, 10, 20, 40, 80, 100, and 160 cm of water was measured. While bulk density of the peat mix (0.129 g·cm–3) was, significantly lower than that of the compost mix (0.157 g·cm–3), total porosity of the peat mix (84%) was significantly greater than that of the compost mix (79%). Air-filled and water-filled porosities of the peat and compost mixes were 18.2% 16.2% and 75.2% 70.5% of container volume, respectively. While the peat mix held more water at tensions between 5 and 20 cm, there was no significant difference between the volumetric water contents of the two media between 20 and 160 cm. Fresh and dry weights of corn plants grown for 3 weeks in compost- and peat-based media were not significantly different.

Free access

William C. Fonteno, Matthew S. Drzal, and D. Keith Cassel

The influence of substrate physical properties on water transport and plant growth must be known if irrigation water use efficiency is to be improved. Three fundamentally different substrates were examined: 1 peat moss: 1 vermiculite (v/v), 3 pine bark: 1 peat: 1 sand, and 1 mineral soil: 1 peat: 1 sand. Capacity analyses included total porosity, container capacity, air space, available water and unavailable water. Water transport was characterized by saturated and unsaturated flow analyses. A new method, Pore Fraction Analysis, was developed to characterize substrate pore structure into fractions based on function with the substrate. This method is based on soil moisture retention curves, pore size distributions, and average effective suction at container capacity (AEScc) This method is offered to expand the traditional terms of macropore and micropore into new definitions: macropores, mesopores, micropore, and ultramicropore; each based on a range of pore sizes and functions. Computer simulation models of air and water profiles were run on several container sizes with the three test substrates. Pore fraction analysis indicated that under traditional production practices macropores indicate the volume of a substrate that be filled with air at container capacity, the mesopore fraction effectively fills and drains with daily irrigation, the micropore fraction functions as a measure of water reserve, while the ultramicropores contain water unavailable to the plant.