Search Results

You are looking at 1 - 10 of 597 items for :

  • Vitis vinifera L. x
  • All content x
Clear All
Free access

Susana Boso Alonso, Virginia Alonso-Villaverde Pilar Gago, José L. Santiago, Mariá C. Martínez, and Emilio Rodriguez

The grapevine cultivar Albariño ( Vitis vinifera L.) has long been grown in northwestern Spain and the north of Portugal. The approval of the Appellation Contrôlée (A.C) “Rías Baixas” denomination in northwestern Spain in 1988 ( Ministerio de

Free access

Fucheng Shan and Kevin Seaton

and this can disrupt tissue culture multiplication and explant growth. In summary, a novel semisterilization method using immature single-node cuttings, SSTC, was developed to allow rapid propagation of grapevines ( Vitis vinifera L.). SSTC was more

Free access

Wanmei Jin, Jing Dong, Yuanlei Hu, Zhongping Lin, Xuefeng Xu, and Zhenhai Han

a widely grown fruit crop in the world. ‘Centennial Seedless’ of Vitis vinifera L. is one of the most widely grown grape varieties in China because it is suitable for both table consumption and wine production ( Kong, 2004 ). The berries of the

Free access

F.J. Montero, J.A. de Juan, A. Cuesta, and A. Brasa

The importance of rapid, nondestructive, and accurate measurements of leaf area (LA) in agronomic and physiological studies is well known, but a search of the literature revealed little information available for grape (Vitis vinifera L.). The results described herein include a comparison of 12 different mathematical models for estimating leaf area in `Cencibel'. The simplest, most accurate regression equations were: LAi = 0.587 LW (R 2 = 0.987) and LAi = 0.588 LW (R 2 = 0.994), where LAi is leaf area measured using image analysis and LW is leaf length × maximum width. Use of maximum width (W), leaf length (L), petiole length (Lp), and dry weight of leaves (DML) as single variables in the regression equations were not as closely associated with total leaf area, although their R 2 values were also highly significant.

Free access

R. Scorza, J.M. Cordts, D.J. Gray, D. Gonsalves, R.L. Emershad, and D.W. Ramming

Transgenic grape plants were regenerated from somatic embryos derived from leaves of in vitro-grown plants of `Thompson Seedless' grape (Vitis vinifera L.) plants. Somatic embryos were either exposed directly to engineered Agrobacterium tumefaciens or they were bombarded twice with 1-μm gold particles and then exposed to A. tumefaciens. Somatic embryos were transformed with either the lytic peptide Shiva-1 gene or the tomato ringspot virus (TomRSV) coat protein (CP) gene. After cocultivation, secondary embryos proliferated on Emershad/Ramming proliferation (ERP) medium for 6 weeks before selection on ERP medium containing 40 μg·mL-1 kanamycin (kan). Transgenic embryos were identified after 3 to 5 months under selection and allowed to germinate and develop into rooted plants on woody plant medium containing 1 μm 6-benzylaminopurine, 1.5% sucrose, 0.3% activated charcoal, and 0.75% agar. Integration of the foreign genes into these grapevines was verified by growth in the presence of kanamycin (kan), positive β-glucuronidase (GUS) and polymerase chain-reaction (PCR) assays, and Southern analysis.

Free access

Shijian Zhuang, Letizia Tozzini, Alan Green, Dana Acimovic, G. Stanley Howell, Simone D. Castellarin, and Paolo Sabbatini

targeted quality traits, especially with respect to the concentrations of sugars, anthocyanins, and phenolics at harvest. Materials and Methods Plant material. Vitis vinifera L. cv. Cabernet franc vines (clone FPS 01), grafted on rootstock 3309 C and

Free access

Stefano Poni, Alberto Palliotti, and Fabio Bernizzoni

This paper describes and evaluates the reliability of a model for prediction of daily carbon balance and dry matter (DM) accumulation in vertically shoot positioned grapevine (Vitis vinifera L.) canopies based on the user-friendly STELLA simulation software. Validation of the model was produced for potted `Cabernet Sauvignon' grapevines at both low canopy density [LD (≈10 shoots/m of row)] and high canopy density [HD (≈20 shoots/m of row)] by comparing, on a seasonal basis, the modelled daily CO2 balance with the diurnal net carbon exchange rate (NCER) measured using a whole-canopy enclosure method. Estimated daily total photosynthesis (Pn) was linearly correlated with measured NCER for LD (r 2 = 0.87) and HD (r 2 = 0.86), thereby indicating that despite its simplicity the model led to a fairly good degree of precision, although it tended to slightly underestimate (5% to 8% less) the measured rates and scattering increased at high values of CO2 fixations. Daily total respiration (R) for LD treatment was 29.0% of total daily Pn, with clusters, leaves and stems accounting for 11.8%, 46.7%, and 41.5%, respectively. Daily total R was 24.2% of total daily Pn in HD treatment and single organs contributed 22.3% (clusters), 41.6% (leaves), and 36.1% (stems). The model estimated that 1604 and 1893 g DM per vine accumulated at harvest for LD and HD treatment, respectively, whereas destructive sampling of leaves, stems and clusters yielded 1475 ± 64 g per vine for LD treatment and 1730 ± 96 g per vine for HD treatment, respectively, corresponding to the 91% and 92% of the DM estimated with STELLA, which in its present version does not take into account root respiration.

Free access

Danijela Janjanin, Marko Karoglan, Mirjana Herak Ćustić, Marijan Bubola, Mirela Osrečak, and Igor Palčić

Austral. J. Grape Wine Res. 11 242 295 Bell, S.-J. Robson, A. 1999 Effect of nitrogen fertilization on growth, canopy density, and yield of Vitis vinifera L. cv. Cabernet Sauvignon Amer. J. Enol. Viticult. 50 351 358 Bergmeyer, H.U. Beutler, H.-O. 1990

Free access

Justine E. Vanden Heuvel, Evangelos D. Leonardos, John T.A. Proctor, K. Helen Fisher, and J. Alan Sullivan

Potted `Chardonnay' grapevines (Vitis vinifera L.) with either two or three shoots were grown in a greenhouse for one month and then transferred to a phytotron room, where either one or two shoots were shaded. Twenty-four days after transfer, leaves at the fifth node of either the light-adapted or shade-adapted shoot were exposed to a 2-hour pulse of 14CO2. Both light environment and number of shade shoots on the vine had a significant effect on photosynthate partitioning within the plant following a 22-hour chase. Leaves fed with 14CO2 on a light-adapted shoot translocated 26.1% and 12.7% more radioactivity to the roots and trunk, respectively, than leaves from shade-adapted shoots. Photosynthates were exported from light-adapted leaves to shade-adapted shoots (1.3% of total 14C in plant). The number of shaded shoots and the light environment of the fed leaf had a large effect on partitioning of photosynthates among ethanol-insoluble, water-soluble, and chloroform-soluble fractions within the leaf. Recovered 14C in the water-soluble fraction of the fed leaf appeared to be affected more by number of shoots than by light environment of the fed leaf. The data suggest that there is a sink effect on initial carbon partitioning patterns in grapevine leaves. Sink strength may have a greater role than light environment. A large proportion of interior leaves versus exterior leaves may be costly with respect to the carbohydrate budget of a vine.

Free access

Letizia Tozzini, Paolo Sabbatini, and G. Stanley Howell

during the ripening period in Vitis vinifera L Planta 192 567 573 Candolfi-Vasconcelos, M.C. Koblet, W. Howell, G.S. Zweifel, W. 1994b Influence of defoliation, rootstock, training system, and leaf position on gas exchange of Pinot noir grapevines Amer