Search Results

You are looking at 1 - 9 of 9 items for :

  • Tomato mottle virus (ToMoV) resistance x
Clear All

The begomoviruses, Tomato yellow leaf curl virus (TYLCV) and Tomato mottle virus (ToMoV), vectored by the silverleaf whitefly ( Bemisia argentifolii Bellows & Perring) can cause severe losses in tomato production. Most cultivated tomatoes are

Free access

Tomato-infecting begomoviruses, including monopartite tomato yellow leaf curl virus (TYLCV) and numerous bipartite viruses including tomato mottle virus (ToMoV), are transmitted by the sweetpotato whitefly ( Bemisia tabaci ), the B biotype of

Free access
Authors: and

The genetic basis of resistance to tomato yellow leaf curl virus (TYLCV) and tomato mottle virus (ToMoV) was studied in three different mapping populations of tomato (Lycopersicon esculentum Mill.). Bulked segregant analysis (BSA) was used to identify random amplification of polymorphic DNA (RAPD) markers linked to TYLCV and ToMoV resistance. Segregated RAPD markers associated with resistance were linked to morphological markers self-pruning (sp) and potato leaf (c) on chromosome 6. RAPD genetic linkage maps of chromosome 6 were constructed for each of the three populations. Common mapped markers revealed straightforward homologies between the chromosome 6 linkage group of the three populations. Multiple-QTL mapping (MQM) was used to identify quantitative trait loci (QTL) for resistance linked to chromosome 6. These revealed that the resistance against TYLCV and ToMoV was mainly explained by two QTL in two populations and one QTL in another. For all of the resistance QTL detected, the favorable allele was provided by the resistant parents. The presence of three different sources of TYLCV and ToMoV resistance, and the markers in tight linkage with them, provide a means of systemically combining multiple resistance genes. Successful cloning of the R gene from tomatoes would lead to deeper understanding of the molecular basis of resistance to TYLCV and ToMoV, and might also shed light on the evolution of resistance genes in plants in general.

Free access
Authors: and

Tomato mottle virus (ToMoV) is a silverleaf whitefly (Bemisia argentifolii Bellows and Perring n. sp.) transmitted, bipartite geminivirus that infects tomatoes (Lycopersicon esculentum Mill.). Inbred lines resistant to ToMoV were derived from Lycopersicon chilense Dunal accession LA 1932. Inheritance was studied using a family developed from the crossing of a resistant inbred with a susceptible tomato inbred over two seasons. The F1 had resistance intermediate to the parents and generation means analysis of F1 and F2, backcross and parental populations suggested that the action of at least two additive genes with high heritability (h2 n.s. = 0.87) controlled ToMoV resistance. When data from the two seasons were combined, an acceptable fit to an additive-dominance genetic model was obtained. Single plant comparisons, bulk comparisons, and tailends of F2 populations segregating for ToMoV resistance derived from LA 1932 identified randomly amplified polymorphic DNA (RAPD) markers using eight hundred 10-mer oligonucleotide primers. The F2 populations used for inheritance studies were screened for polymorphic markers, and 12 RAPD markers associated with the ToMoV resistant line were linked to the morphological markers self-pruning (sp) and potato leaf (c) on chromosome 6. RAPD markers that were associated with ToMoV resistance segregated into two linked regions flanking either side of the sp and c loci. The molecular studies suggested that the action of at least two additive regions controlled ToMoV resistance which supported the inheritance analysis.

Free access

Nineteen interspecific hybrid breeding lines were tested for resistance to a TSWV isolate using enzyme-linked immunosorbent assay (ELISA) to check for presence of the virus after inoculation. These lines were all BC1F6 lines derived from L. esculentum crosses with seven L. chilense accessions. All of these lines had been selected for high tolerance/resistance to tomato mottle virus (ToMoV), a geminivirus [Scott et al., Bemisia 1995: Taxonomy, Biology, Damage Control and Management 30: 357–367 (1996)]. The initial TSWV screening indicated that eight of the 19 original lines had “possible” TSWV resistance. Seed from these selected eight lines were then planted and inoculated with TSWV ≈3 weeks after emergence. Three weeks later, ELISA results indicated that all plants from all lines were infected with TSWV. However, none of the plants from Y118 (derived from the LA 1938 cross) showed visual TSWV symptoms. The Y118-derived plants were allowed to grow for several months, and at no time developed significant visual symptoms of the virus. The consistent lack of TSWV symptoms prompted a second ELISA test on the Y118 plants, and the results indicated the plants were completely free of TSWV. Further tests were then initiated with F2 (L. esculentum × Y118) seed, and results indicate a single dominant gene is responsible for TSWV resistance. Data from this segregating population, including a molecular marker study which screened 800 randomly amplified polymorphic DNA (RAPD) primers, will be presented. Approximately two to five RAPD primers are possibly linked to TSWV resistance.

Free access
Authors: and

Resistance to begomoviruses tomato mottle virus (ToMoV) and tomato yellow leaf curl virus (TYLCV) has been introgressed to tomato (Lycopersicon esculentum) from L. chilense accessions LA 1932, LA 2779, and LA 1938. Resistance genes have been mapped to three regions on chromosome 6 using randomly amplified polymorphic DNA (RAPD) markers. We call these regions 1, 2, and 3. To facilitate breeding by marker assisted selection, advanced breeding lines with resistance from the above sources were assayed for the presence of RAPD markers to determine which were most tightly linked to begomovirus resistance. The best RAPD markers were then converted to sequence characterized amplified region (SCAR) markers or cleaved amplified polymorphic sequence (CAPS) markers. In addition, selected restriction fragment length polymorphism (RFLP) markers near the three regions were converted into CAPS markers, which were tested for association with the advanced breeding lines. Only LA 2779 derivatives have the L. chilense introgression in region 1, which is near the location of the Ty-1 gene and spans across CAPS markers 32.5Cla and TG118. Two region 1 RAPD markers UBC197 and UBC621 were converted co-dominant SCAR or CAPS markers, which were present in all 16 resistant breeding lines tested. Derivatives from all three accessions have introgressions in region 2. Further assays with more markers in this region are under way to determine the lengths and locations of the introgressions. No tightly linked RAPD markers have been found for the resistance gene from LA 1932 in region 3. RFLP and CAPS markers are being used to more precisely locate the region 3 gene.

Free access

( Xanthomonas spp.). Furthermore, the Ty-1 gene is not effective against some TYLCV strains and some other Begomoviruses , such as Tomato mottle virus (ToMoV). To date, several additional resistance genes have been identified including Ty-2, Ty-3, Ty-4

Free access

around the world. ‘Tyking’-derived resistance is useful against various monopartite and bipartite begomoviruses , including TYLCV, Tomato mottle virus (ToMoV) ( Scott, 2001 ), Tomato chlorotic mottle virus (TCMV) ( Giordano et al., 2005 ), Tomato

Free access

generation) in the field after inoculation with Tomato mottle virus (ToMoV) and selection for resistant plants each generation. The F 7 was highly resistant but wild in appearance. Seed was sent to Judith Milo at the Hebrew University in Rehovot, Israel

Free access