Search Results

You are looking at 1 - 8 of 8 items for :

  • Podosphaera clandestina x
Clear All
Free access

Jill Marie Calabro, Robert A. Spotts and Gary G. Grove

As production of sweet cherries ( Prunus avium L.) has flourished in Oregon and Washington, so has powdery mildew caused by the fungus Podosphaera clandestina (Wall.:Fr) Lev. Fruit infected with P. clandestina develop unsightly blemishes after

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

A detached leaf disk assay for screening sweet cherry (Prunus avium L.) genotypes for susceptibility to powdery mildew (PM) [Podosphaera clandestina (Wallr.:Fr.) Lev.] was developed by evaluating the effects of photoperiod (24 hours light, 0 hours light, 14 hours light/10 hours dark), substrate nutrient content (sterile distilled water, 1% sucrose), leaf age (old, young, emergent), and leaf explant size (intact leaf, 30 mm, 20 mm) on PM growth on leaves from the susceptible cultivar Bing. The only parameter described that had a significant (P ≤ 0.001) effect on PM growth was leaf age. Old leaves, designated as the third fully expanded leaf from the basal end of current-year's shoot growth, were never infected with PM under controlled inoculations. In the absence of significant differences between treatments, those parameters with the highest treatment means were selected for subsequent evaluation. To test the leaf disk assay, 14 sweet cherry cultivars were screened in two experiments, and rated according to level of PM susceptibility. Rank sum comparison of results from cultivars used for leaf disk screening agreed with earlier field rankings of the same cultivars. The developed leaf disk assay greatly reduced the space required to screen sweet cherry cultivars, and was a repeatable and objective predictor of field resistance that may be useful for screening germplasm or breeding populations.

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

Most sweet cherry (Prunus avium L.) cultivars grown commercially in the Pacific Northwest U.S. are susceptible to powdery mildew caused by the fungus Podosphaera clandestina (Wall.:Fr.) Lev. The disease is prevalent in the irrigated arid region east of the Cascade Mountains in Washington State. Little is known about genetic resistance to powdery mildew in sweet cherry, although a selection (`PMR-1') was identified at the Washington State Unive. Irrigated Agriculture Research and Extension Center that exhibits apparent foliar immunity to the disease. The objective of this research was to characterize the inheritance of powdery mildew resistance from `PMR-1'. Reciprocal crosses between `PMR-1' and three high-quality, widely-grown susceptible cultivars (`Bing', `Rainier', and ëVaní) were made to generate segregating progenies for determining the mode of inheritance of `PMR-1' resistance. Progenies were screened for susceptibility to powdery mildew colonization using a laboratory leaf disk assay. Assay results were verified by natural spread of powdery mildew among the progeny seedlings in a greenhouse and later by placement among infected trees in a cherry orchard. Progenies from these crosses were not significantly different (P > 0.05) when tested for a 1:1 resistant to susceptible segregation ratio, indicating that `PMR-1' resistance is conferred by a single gene, which we propose to designate as PMR-1.

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

A personal computer-based method was compared with standard visual assessment for quantifying colonization of sweet cherry (Prunus avium L.) leaves by powdery mildew (PM) caused by Podosphaera clandestina (Wallr.:Fr.) Lev. Leaf disks from 14 cultivars were rated for PM severity (percentage of leaf area colonized) by three methods: 1) visual assessment; 2) digital image analysis; and 3) digital image analysis after painting PM colonies on the leaf disk. The third technique, in which PM colonies on each leaf disk were observed using a dissecting microscope and subsequently covered with white enamel paint, provided a standard for comparison of the first two methods. A digital image file for each leaf disk was created using a digital flatbed scanner. Image analysis was performed with a commercially available software package, which did not adequately detect slight differences in color between PM and sweet cherry leaf tissue. Consequently, two replicated experiments revealed a low correlation between PM image analysis and painted PM image analysis (r2 = 0.66 and 0.46, P ≤ 0.0001), whereas visual assessment was highly correlated with painted PM image analysis (r2 = 0.88 and 0.95, P ≤ 0.0001). Rank orders of the 14 cultivars differed significantly (P ≤ 0.05) when PM image analysis and painted PM image analysis were compared; however, rankings by visual assessment were not significantly different (P > 0.05) from those by painted PM image analysis. Thus, standard visual assessment is an accurate method for estimating disease severity in a leaf disk resistance assay for sweet cherry PM.

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

Most sweet cherry (Prunus avium L.) cultivars grown commercially in the Pacific Northwestern states of the United States are susceptible to powdery mildew, caused by the fungus Podosphaera clandestina (Wall.:Fr.) Lev. The disease is prevalent in the irrigated arid region east of the Cascade Mountains in Washington State. Little is known about genetic resistance to powdery mildew in sweet cherry, although a selection (PMR-1) was identified at Washington State Univ.'s Irrigated Agriculture Research and Extension Center that exhibits apparent foliar immunity to the disease. The objective of this research was to determine the inheritance of powdery mildew resistance from PMR-1. Reciprocal crosses were made between PMR-1 and three high-quality, widely-grown susceptible cultivars (`Bing', `Rainier', and `Van'). Resultant progenies were screened for reaction to powdery mildew colonization using a laboratory leaf disk assay. Assay results were verified by natural spread of powdery mildew among the progeny in a greenhouse and later by placing them among infected trees in a cherry orchard. Segregation within the progenies for powdery mildew reaction fit a 1 resistant: 1 susceptible segregation ratio (P ≤ 0.05), indicating that resistance to powdery mildew derived from PMR-1 was conferred by a single gene.

Free access

James W. Olmstead and Gregory A. Lang

Most sweet cherry (Prunus avium L.) cultivars grown commercially in the United States are susceptible to powdery mildew, caused by the fungus Podosphaera clandestina (Wall.:Fr.) Lev. Recently, hybrid populations segregating for resistance to powdery mildew were developed by crossing a mildew-resistant sweet cherry selection, PMR-1, with the susceptible cultivars Bing, Rainier, and Van. Although segregation within these populations indicated a single gene was responsible for the powdery mildew resistance conferred by PMR-1, the gene action could not be determined. Therefore, a reciprocal cross between `Bing' and `Van' was made to determine the allelic state of the susceptible parents used previously. All progeny (n = 286) from this cross were susceptible to powdery mildew. This information, combined with results from previous segregation data, indicate the powdery mildew resistance gene is inherited in a dominant manner and is present in PMR-1 in the heterozygous allelic state. We have named this gene Pmr1. Furthermore, in combination with known pedigree information, we have been able to predict the susceptibility of more than 60 additional commercial and recently released sweet cherry cultivars.

Full access

Gregory A. Lang

High tunnel production systems typically use horticultural crops that are annually or biennially herbaceous, high in value, short in stature, and quick to produce. At best, tree fruits may fit only one of these criteria–high value. Sweet cherry (Prunus avium) may command high enough values in premium market niches to make high tunnel production strategies worth attempting. Furthermore, sweet cherry production can be a risky endeavor, even in optimal climates, due to the potentially devastating effects of preharvest rain that cause fruit cracking. Consequently, environmental modification by tunnels in regions like the Great Lakes provides a significant risk reduction. Additional potential benefits, such as protection from frosts, diseases, insects, wind scarring, etc., add further production value. Multi-bay high tunnels were constructed in 2005 at two Michigan State University experiment stations, over established and newly planted sweet cherry trees on dwarfing rootstocks, to study and optimize the effects of production environment modification on vegetative and reproductive growth, marketing season extension, and protection of cherries from diseases, insect pests, and/or physiological disorders. Results with tunnels thus far include premium fruit quality and high crop value; increased leaf size and terminal shoot growth; decreased radial trunk growth; decreased chemical pesticide inputs; decreased incidence of cherry leaf spot (Blumeriella jaapii) and bacterial canker (Pseudomonas syringae); increased incidence of powdery mildew (Podosphaera clandestina); inconclusive effects on brown rot (Monolinia fructicola); no or reduced infestation by plum curculio (Conotrachelus nenuphar) or cherry fruit fly (Rhagoletis cingulata); dramatically reduced japanese beetle (Popillia japonica) damage; and increased black cherry aphid (Myzus cerasi) and two-spotted spider mite (Tetranychus urticae) populations.

Free access

Leah L. Granke, Layla E. Crawford and Mary K. Hausbeck

release and germination of ascospores of Podosphaera clandestina Phytopathology 81 1271 1275 Hammett, K.R.W. Manners, J.G. 1971 Conidium liberation in Erysiphe graminis . I. Visual and statistical analysis of spore trap records Trans. Br. Mycol. Soc. 56