Search Results

You are looking at 1 - 10 of 147 items for :

  • Juglans regia x
Clear All
Free access

Gregory T. Browne, Charles A. Leslie, Joseph A. Grant, Ravindra G. Bhat, Leigh S. Schmidt, Wesley P. Hackett, Daniel A. Kluepfel, Reid Robinson and Gale H. McGranahan

Persian (english) walnut ( Juglans regia L.) orchards can incur serious economic loss from attack by several soilborne pathogens, including Agrobacterium tumefaciens Smith and Townsend (causal agent of crown gall disease), Armillaria mellea

Free access

Cevriye Mert

Juglans regia L. is typical of Juglandaceae in that it is monoecious, wind-pollinated, and self-compatible. Despite its self-compatibility, breeding and research programs have encountered difficulties acquiring sufficient quantities of pollen

Full access

Javiera Morales, Ximena Besoain, Italo F. Cuneo, Alejandra Larach, Laureano Alvarado, Alejandro Cáceres-Mella and Sebastian Saa

). The high N inputs used in walnut production ( Gupta et al., 2012 ; Simorte et al., 2001 ; Weinbaum and Van Kessel, 1998) and the high susceptibility to P. cinnamomi reported in Juglans regia L. ( Guajardo et al., 2017 , 2019 ) highlight the need

Free access

Kourosh Vahdati, Naser Lotfi, Bahman Kholdebarin, Darab Hassani, Reza Amiri, Mohammad Reza Mozaffari and Charles Leslie

seed or by grafting on rootstocks ( Vahdati, 2003 ). Hence, there is huge genetic diversity among rootstock traits. For example, there are many old Persian walnut ( Juglans regia L.) trees in Iran that have been planted on the banks of rivers. The long

Free access

Keith Woeste, Gale H. McGranahan and Robert Bernatzky

Twenty-five random decamer primers were used to evaluate the level of polymorphism between Persian walnut and the Northern California black walnut. Sixty-six randomly amplified polymorphic DNA (RAPD) markers were identified using an interspecific walnut backcross population [(Juglans hindsii × J. regia) × J. regia]. Segregation data from these polymorphisms were joined to a previously published set of restriction fragment-length polymorphism (RFLP) marker data to expand the genetic map of walnut to 107 markers in 15 linkage groups.

Free access

Wilbur Reil, David Ramos and Ronald Snyder

Two management systems were initiated in a 10 year old Juglans regia cv. Hartley orchard planted 8 m. × 8 m. in 1977. Annual dormant selective pruning was practiced for the next 8 years on all trees within one treatment (pruning) compared to dormant severe pruning on alternate temporary trees with no pruning on adjacent permanent trees (thinning). Temporary trees were removed in the thinning treatment in 1985.

Yield, trunk cross sectional area, pruning weight and nut quality factors were evaluated each year from the 5 replicate, completely randomized trial.

Yield and nut quality factors did not differ between the two treatments during the 15 years.

In 1990 the pruned trial was again pruned causing a 20% drop in production (p=.06). With no additional pruning yield returned to slightly above the thinned treatment in 1991.

This trial demonstrates that Hartley walnut trees (terminal bearing habit) continue to produce satisfactory crops under crowded canopy management but a tree thinning program offers other advantages which also should be considered.

Free access

Robert G. Fjellstrom, Dan E. Parfitt and Gale H. McGranahan

RFLP markers were used to study genetic diversity among California walnut (Juglans regia L.) cultivars and germplasm collected worldwide. 16 of 21 RFLP markers were polymorphic in the 48 walnut accessions tested. Seven RFLP markers permitted unique identification of all walnut cultivars. All genotypes were heterozygous at approximately 20% of the loci for both California and worldwide germplasm. California walnut germplasm contained 65% of the worldwide allelic diversity. Cluster analysis of genetic distance between accessions and principal component analysis of allelic genotypes showed two major groups of walnut domestication. California germplasm was associated with germplasm from France, Central Europe, and Iran, and had less genotypic similarity with germplasm from Nepal, China, Korea, and Japan.

Free access

Kourosh Vahdati, James R. McKenna, Abhaya M. Dandekar, Charles A. Leslie, Sandie L. Uratsu, Wesley P. Hackett, Paola Negri and Gale H. McGranahan

Walnuts (Juglans spp.) are difficult-to-root woody plants. The rolABC genes (rolA + rolB + rolC), derived from the bacteria Agrobacterium rhizogenes, have been shown to increase the rooting potential of other difficult-to-root woody plants. We inserted the rolABC genes into somatic embryos of a `Paradox' hybrid (J. hindsii × J. regia) clone PX1 using the A. tumefaciens gene transfer system. A transgenic sub-clone, designated PX1 rolABC 2-2 was selected and compared to the untransformed clone for a variety of phenotypic characteristics, including rooting potential. Transformed and untransformed shoots were budded onto seedling J. regia rootstock in the greenhouse and established in the field. Transformed trees displayed reduced internode length, an increase in lateral branching, and wrinkled leaves. In another test, a commercial persian walnut cultivar J. regia `Chandler' was grafted onto rooted cuttings of both the untransformed and transformed plants. The presence of the rolABC genes in the rootstock had no visible effects on the grafted scion. Several of these trees were excavated from the field and the root systems of each genotype were examined for root number, diameter, and biomass. Trees with the rolABC rootstock had significantly more small diameter roots compared to the controls and less recovered biomass. Tests of the rooting potential of leafy semi-hardwood cuttings for two years resulted in 14% to 59% rooting of the transformed cuttings compared to 51% to 81% rooting of the control. Both transformed hardwood cuttings and microshoots in tissue culture also rooted significantly less (52% and 29% respectively) than untransformed hardwood cuttings and tissue cultured shoots (82% and 54% respectively). Thus, although the rolABC genes induced a shorter internode length and a more fibrous root system (typical of rol-tranformed plants), they were not useful for increasing the rooting potential, and as rootstock they did not affect the phenotype of the scion.

Free access

Daniel Potter, Fangyou Gao, Giovanna Aiello, Charles Leslie and Gale McGranahan

The utility of intersimple sequence repeat (ISSR) markers for identification of English or Persian walnut (Juglans regia L.) cultivars was explored. Four cultivars were screened with 47 ISSR primers; eight of these primers, which generated reproducible and informative data, were selected for further study. Two individuals from each of 48 cultivars, including many currently important in the California walnut industry as well as accessions from Europe and Asia, were then examined with the eight ISSR primers. Polymerase chain reaction (PCR) products were separated on agarose gels and stained with ethidium bromide. Fifty-four bands were scored as present or absent in each cultivar; of these, 31 (57%) were polymorphic among the 48 cultivars. Combined data from the eight ISSR primers provided a unique fingerprint for each of the cultivars tested. Fifteen of the cultivars could be distinguished from all others with just one primer, 31 with a minimum of two primers, and two required three primers. Pairwise genetic distances between the cultivars were calculated and a dendrogram was generated using the neighbor-joining algorithm. Some of the groupings in the dendrogram corresponded to groups which, based on known pedigrees, are genealogically closely related. Others included accessions from diverse genetic and/or geographic origins. These results can be attributed to a combination of the limitations of the ISSR method for inferring genetic relationships, on the one hand, and the complex history of walnut cultivar development involving extensive exchange and breeding of germplasm from different geographic regions, on the other.

Free access

R.G. Fjellstrom, D.E. Parfitt and G.H. McGranahan

RFLP markers were used to investigate genetic diversity among California walnut (Juglans regia) cultivars and germplasm collected worldwide. Sixteen of 21 RFLP markers were polymorphic in the 48 walnut accessions tested. RFLP markers were useful for identifying walnut cultivars. All genotypes were heterozygous at ≈20% of the loci for both California and worldwide germplasm. California walnut germplasm contained 60% of the worldwide allelic diversity. Cluster analysis of genetic distance between accessions and principal component analysis of allelic genotypes showed two major groups of walnut domestication. California germplasm was associated with germplasm from France, central Europe, and Iran and had less genotypic similarity with germplasm from Nepal, China, Korea, and Japan.