Search Results

You are looking at 1 - 10 of 1,263 items for :

  • Refine by Access: All x
Clear All
Free access

Miguel Urrestarazu, Juan E. Alvaro, Soraya Moreno, and Gilda Carrasco

The use of synthetic iron (Fe) chelates in fertigation is the most common method to alleviate iron deficiency in crops. Several factors that determine the effectiveness of Fe chelates have been described such as the dosage applied and how theses

Open access

Jiaxin Li, Yingli Ma, and Yinfeng Xie

on the beneficial effects of Fe 3 O 4 NPs; these have concentrated mainly on iron-deficient plants or plants in a saline-alkali environment ( Chouliaras et al., 2004 ). For example, using Fe 3 O 4 NPs treatment has improved maize ( Zea mays

Free access

David R. Byrnes, Fekadu F. Dinssa, Stephen C. Weller, and James E. Simon

( Weller et al., 2015 ). Previous studies have shown success in selecting increased Fe and Zn content in rice ( Oryza sativa ) without consequence to yield performance; these entries of rice were later observed to be effective as a food source for the

Free access

Joseph P. Albano

Soluble fertilizers are typically formulated with metal-aminopolycarboxylic acids [APCA (i.e., chelating agents)] of Cu, Fe, Mn, and Zn. These metal–APCA complexes, however, are also applied as single-metal chelate solutions to foliage, soil

Free access

Brandon R. Smith and Lailiang Cheng

`Concord' grapevines (Vitis labruscana Bailey) can readily develop iron deficiency-induced leaf chlorosis when grown on calcareous or high pH soils. Iron (Fe) chelates are often applied to the soil to remedy chlorosis but can vary in their stability and effectiveness at high pH. We transplanted own-rooted 1-year-old `Concord' grapevines into a peat-based medium adjusted to pH 7.5 and fertigated them with 0, 0.5, 1.0, 2.0, or 4mg·L–1 Fe from Fe-EDDHA [ferric ethylenediamine di (o-hydroxyphenylacetic) acid] to determine the effectiveness of this Fe chelate for alleviating Fe deficiency-induced chlorosis at high pH. Vines were sampled midseason for iron, chlorophyll, CO2 assimilation, and photosystem II quantum efficiency (PSII) and at the end of the season for leaf area, dry weight, and cane length. We found that leaf total Fe concentration was similar across all treatments, but active Fe (extracted with 0.1 n HCl) concentration increased as the rate of Fe-EDDHA increased. Chlorophyll concentration increased curvilinearly as applied Fe increased and was highly correlated with active Fe concentration. CO2 assimilation, stomatal conductance, and PSII were very low without any supplemental Fe and increased rapidly in response to Fe application. Total leaf area, foliar dry weight, and cane length all increased as Fe application increased to 1 mg·L–1 Fe, but above this rate, a further increase in Fe did not significantly increase growth. Our results demonstrate that Fe-EDDHA is very effective in alleviating Fe deficiency-induced leaf chlorosis in `Concord' grapevines grown at high pH, which provides a foundation for continuing research related to the optimum rate and timing of application of Fe-EDDHA in `Concord' vineyards on calcareous soils. Compared with total Fe, leaf “active Fe” better indicates the actual Fe status of `Concord' vines.

Free access

J.M. Goatley Jr. and R.E. Schmidt

This study was conducted to determine if foliar-applied biostimulators could enhance harvestability and transplanting of Kentucky bluegrass (Poa pratensis L.) sod. The systemic triazole fungicides propiconazole at 42 mg·m-2 and triadimefon at 150 mg·m-2 enhanced post-transplant rooting and sod strength of bluegrass. Propiconazole had the best sod enhancement effect, increasing sod tensile strength 23% and increasing transplant root lift strength 64% across three experiments. The synthetic cytokinin benzyladenine (BA) at 6 mg·m-2 and seaweed extract (SWE, a freeze-dried extract of the seaweed Ascophyllum nodosum) at 0.3 ml product/m 2 had little effect. The response to triadimefon was intermediate. Foliar applications of chelated Fe phosphate citrate at 112 mg·m-2 did not enhance sod strength or rooting of Kentucky bluegrass when applied either alone or in combination with the biostimulator materials. Chemical names used: l-(2-(2,4 -dichlorophenyl)-4-propyl-l,3-dioxo1an-2-ylmethyl)-lH-l,2,4-triazole(propiconazole);1-(4-chlorophenoxy)-3,3-dimethyl-lH-(l,2,4-triazo1-l-yl)-butanone (triadimefon);6-benzylaminopurine (BA, benzyladenine).

Free access

Alan W. Meerow and Timothy K. Broschat

Anatomical differences in leaves of queen palm [Syagrus romanzoffiana (Chamisso) Glassman] showing visible K, Mn, and Fe deficiency symptoms are described. Potassium-deficient leaves showed less organization in the mesophyll than healthy leaves. Adaxial fibers increased in diameter. Chloroplast frequency was reduced overall, but most severely in areas of the leaf showing gross symptoms of the deficiency. Manganese-deficient leaves had reduced chloroplast frequency, especially in tissue near necrotic areas, and thicker and more fibers per unit length. Iron-deficient leaves had few chloroplasts throughout the mesophyll, and also thicker and more fibers per unit length.

Free access

Michael D. Frost, Janet C. Cole, and John M. Dole

Improving the quality of water released from containerized production nurseries and greenhouse operations is an increasing concern in many areas of the United States. The potential pollution threat to our ground and potable water reservoirs via the horticultural industry needs to receive attention from growers and researchers alike. `Orbit Red' geraniums were grown in 3:1 peat:perlite medium with microtube irrigation to study the effect of fertilizer source on geranium growth, micronutrient leaching, and nutrient distribution. Manufacturer's recommended rates of controlled-release (CRF) and water-soluble fertilizers (WSF) were used to fulfill the micronutrient requirement of the plants. Minimal differences in all growth parameters measured between WSF and CRF were determined. A greater percentage of Fe was leached from the WSF than CRF. In contrast, CRF had a greater percentage of Mn leached from the system than WRF during the experiment. Also, regardless of treatment, the upper and middle regions of the growing medium had a higher nutrient concentration than the lower region of medium.

Free access

Joseph P. Albano and William B. Miller

Marigold (Tagetes erecta L.) grown hydroponically in an irradiated nutrient solution containing FeDTPA had root ferric reductase activity 120% greater, foliar Fe level 33% less, and foliar Mn level 90% greater than did plants grown in an identical, nonirradiated solution, indicating that the plants growing in the irradiated solution were responding to Fe-deficiency stress with physiological reactions associated with Fe efficiency. The youngest leaves of plants grown in the irradiated solution had symptoms of Mn toxicity (interveinal chlorosis, shiny-bronze necrotic spots, and leaf deformation). Plants grown in irradiated solution in which the precipitated Fe was replaced with fresh Fechelate were, in general, no different from those grown in the nonirradiated solution. Chemical name used: ferric diethylenetriaminepentaacetic acid (FeDTPA).

Free access

Timothy K. Broschat and Kimberly K. Moore

Zonal geraniums (Pelargonium ×hortorum) from seed and african marigolds (Tagetes erecta), which are known to be highly susceptible to Fe toxicity problems, were grown with I, 2, 4, or 6 mm Fe from ferrous sulfate, ferric citrate, FeEDTA, FeDTPA, FeEDDHA, ferric glucoheptonate, or ferrous ammonium sulfate in the subirrigation solution. FeEDTA and FeDTPA were highly toxic to both species, even at the 1 mm rate. Ferrous sulfate and ferrous ammonium sulfate caused no visible toxicity symptoms on marigolds, but did reduce dry weights with increasing Fe concentrations. Both materials were slightly to moderately toxic on zonal geraniums. FeEDDHA was only mildly toxic at the 1 mm concentration on both species, but was moderately toxic at the 2 and 4 mm concentrations. Substrate pH was generally negatively correlated with geranium dry weight and visible phytotoxicity ratings, with the least toxic materials, ferrous sulfate and ferrous ammonium sulfate, resulting in the lowest substrate pHs and the chelates FeEDTA, FeDTPA, and FeEDDHA the highest pH. The ionic Fe sources, ferrous sulfate and ferrous ammonium sulfate, suppressed P uptake in both species, whereas the Fe chelates did not. Fe EDDHA should be considered as an effective and less toxic alternative for the widely used FeEDTA and FeDTPA in the production of these crops.