Search Results

You are looking at 1 - 10 of 334 items for :

  • Botrytis cinerea x
Clear All

present, more than 20 kinds of fungal diseases of peony have been reported, of which gray mold caused by Botrytis cinerea is an increasingly severe disease with a high frequency of occurrence ( Yang et al., 2017 ). The pathogen can cause necrotic leaves

Free access

Botrytis cinerea , the causal agent of botrytis blight, is a ubiquitous plant pathogen that infects more than 200 crop species worldwide. Although there are fungicides available for botrytis blight management, many chemical classes have low efficacy

Open Access

Botrytis diseases are the most common and among the most destructive diseases affecting greenhouse-grown crops. Presently a combination of cultural control and fungicidal sprays are used to control the disease. Increasing energy and labor costs plus evidence of resistance of B. cinerea strains to commonly used fungicides has made the disease more difficult to control. A source of genetic resistance would provide an additional powerful and stable tool to control the incidence of Botrytis disease.

In this study screening techniques for Botrytis resistance in petunia were developed and 40 petunia genotypes were screened for resistance to B. cinerea. A wide range of variability for resistance to B. cinerea was discovered in petunia. Results indicate the presence of useful quantitative-type resistance to B. cinerea in petunia.

Free access

being immediately discarded that contained a single infected berry that might not reflect the true storability of the cultivar or selection. Identification of Botrytis cinerea using Koch’s postulates and gene sequencing. Botrytis cinerea was isolated

Free access

Although Petunia hybrida Vilm., a major bedding plant, is susceptible to many diseases, no formal disease resistance studies have been conducted. Botrytis cinerea Pers. ex Fr. is a ubiquitous pathogen, causing great damage to greenhouse-grown ornamental crops, including petunia. In this study, a screening procedure for B. cinerea resistance in petunia was developed and 48 diverse petunia phenotypes were screened for resistance to B. cinerea in two seasons, spring and fall. The range of variability for resistance to B. cinerea in petunia was wide and continuous. Spearman's rank correlation coefficients between seasons were significant and moderate. While the majority of phenotypes displayed less than a 10% difference in mean percent infection in spring vs. fall seasons, several phenotypes displayed large differences that require further testing. One cultivar, `Pink Sensation Improved', exhibited low and consistent mean percent infection in both spring and fall and, therefore, may be a useful source of resistance to B. cinerea in petunia.

Free access

al., 2017 ). The symptoms seriously affect the ornamental and commercial values of the plants. Studies have reported that the main pathogens causing gray mold on tree peony are Botrytis paeoniae and B. cinerea (Hansen, 2009; Pfleger et al., 1998

Free access

extent of the damage caused by the penetration of the pathogen. ( A ) Leaf discs from pepper plants subjected to the four different treatments 3 d after inoculation (DAI); 1) with silicon (Si) and Botrytis cinerea inoculum (+Si +Bot .); 2) without Si

Free access

disease in plants ( Mengel and Kirby, 2001 ; Talbot and Zeiger, 1996 ). These confounding findings could be a potential factor for conflicting reports of the influence of N in disease-related studies. Botrytis cinerea is a ubiquitous pathogen that

Free access

Botrytis cinerea is an economically important fungal pathogen of Pelargonium species. We are currently studying this plant–pathogen interaction to identify mechanisms of host resistance. Our ultimate objective is to develop commercial Pelargonium genotypes with enhanced resistance to this pathogen. Though all stages of production may be affected by this pathogen, we are investigating foliar and floral resistance of mature plants. Through simple assays, over 200 genotypes have been evaluated for foliar resistance, and more than 100 genotypes have been evaluated for floral resistance. Resistant and susceptible control genotypes have been identified for diploid and tetraploid P. ×hortorum and P. peltatum; these genotypes are being investigated to elucidate mechanisms of resistance. The diploid ivy accession 86-23-1 and the tetraploid zonal geranium `Fox' have the greatest foliar resistance among the genotypes evaluated. The diploid P. ×hortorum `Ben Franklin' has the greatest floral resistance among the evaluated genotypes. Foliar and floral resistance appear to be inherited as separate traits. Foliar resistance is manifested as a two day delay in symptom expression when compared to susceptible genotypes. Foliar resistant accession 86-23-1 has a cuticle with 150% the mass of other Pelargonium genotypes. This difference may be responsible for the observed resistance. Cuticle mass does not appear to be important in floral resistance.

Free access

Decay caused by Botrytis cinerea is significantly reduced by increasing the calcium concentration of apple fruit tissue. Electron microscope studies have revealed that cracks in the epicuticular wax may be an important pathway by which calcium penetrates into the fruit and increases the calcium concentration. In fruit inoculated with B. cinerea, the decay induced compositional changes in the cell walls of high-calcium fruit were smaller than those observed in the low calcium treatment. The effect of calcium in reducing decay is associated with maintaining cell wall structure by delaying chemical changes in cell wall composition. B. cinerea produced five polygalacturonase isozymes in vitro but only one in vivo. Among the cations studied-m was the most potent inhibitor of polygalacturonase activity in in vitro studies. Its mode of inhibition appears to involve the alteration of substrate availability for hydrolysis, rather than any direct effect on the active sites of the enzyme.

Free access