Search Results

You are looking at 1 - 8 of 8 items for :

  • Amaranthus spinosus x
  • All content x
Clear All
Free access

James W. Shrefler, William M. Stall, and Joan A. Dusky

Three field studies on high-organic-matter soils were conducted to determine the zone of influence of spiny amaranth on lettuce head quality. Spiny amaranth reduced lettuce head firmness at all distances from the weed, ≤105 cm. Lettuce ribbiness increased at 15 and 45 cm compared with the weed-free control. Untrimmed lettuce head weight was not affected by spiny amaranth presence beyond 45 cm. Trimmed lettuce head weight was reduced at all distances compared with the control. Stem diameter and core length were not affected by spiny amaranth competition. The presence of a single spiny amaranth plant significantly influenced some lettuce quality traits at ≤105 cm.

Full access

Charles L. Webber III, Merritt J. Taylor, and James W. Shrefler

Squash (Cucurbita pepo) producers could benefit from additional herbicide options that are safe to the crop and provide effective weed control. Research was conducted in southeastern Oklahoma (Atoka County, Lane, OK) during 2010 and 2011 to determine the impact of pelargonic acid (PA) on weed control efficacy, crop injury, and squash yields. The experiment included PA applied unshielded postdirected at 5, 10, and 15 lb/acre, plus an untreated weedy control and an untreated weed-free control. ‘Enterprise’ yellow squash was direct-seeded in single rows into raised beds. Weeds included smooth crabgrass (Digitaria ischaemum), cutleaf groundcherry (Physalis angulata), spiny amaranth (Amaranthus spinosus), and yellow nutsedge (Cyperus esculentus). Pelargonic acid was applied each year in mid-July and then reapplied 8 days later. The maximum smooth crabgrass control (98%), broadleaf weed control (94%), and yellow nutsedge control (41%) was observed with the 15-lb/acre PA treatment at 9 days after initial spray treatment (DAIT), 1 day after sequential treatment (1 DAST). Pelargonic acid at 15 lb/acre provided equal or slightly greater smooth crabgrass and broadleaf (cutleaf groundcherry and spiny amaranth) control compared with the 10-lb/acre application, and consistently greater control than the 5-lb/acre rate and the weedy control. Pelargonic acid was less effective at controlling yellow nutsedge than smooth crabgrass and broadleaf weeds. Yellow nutsedge control peaked at 9 DAIT (1 DAST) with 10-lb/acre PA (41%). As the rate of PA increased from 5 to 15 lb/acre, yellow nutsedge control also increased significantly for all observation dates, except for 28 DAIT. Increasing the PA application rate increased the crop injury rating at 1 and 3 days after each application (1 and 3 DAIT, 1 and 3 DAST). Maximum squash injury occurred for each application rate at 9 DAIT (1 DAST) with 4.4%, 8.0%, and 12.5% injury for PA rates 5, 10, and 15 lb/acre, respectively. The 10-lb/acre PA treatment produced the highest squash yields (kilograms per hectare) and fruit number (fruit per hectare) compared with either the 5- or 15-lb/acre rates, and equivalent yields and fruit number as the hand-weeded weed-free treatment. The 10-lb/acre PA rate applied in a timely sequential application has the potential of providing good weed control with minimal crop injury resulting in yields equivalent to weed-free hand-weeding conditions.

Full access

Charles L. Webber III, Merritt J. Taylor, and James W. Shrefler

Pepper (Capsicum annuum) producers would benefit from additional herbicide options that are safe to the crop and provide effective weed control. Research was conducted in southeastern Oklahoma (Atoka County, Lane, OK) during 2010 and 2011 to determine the impact of pelargonic acid on weed control efficacy, crop injury, and pepper yields. The experiment included pelargonic acid applied unshielded postdirected at 5, 10, and 15 lb/acre, plus an untreated weedy control and an untreated weed-free control. ‘Jupiter’ sweet bell pepper, a tobacco mosaic virus-resistant sweet pepper with a 70-day maturity, was transplanted into single rows on 3-ft centered raised beds with 18 inches between plants (9680 plants/acre) on 28 May 2010 and 27 May 2011, respectively. Weeds included smooth crabgrass (Digitaria ischaemum), cutleaf groundcherry (Physalis angulata), spiny amaranth (Amaranthus spinosus), and yellow nutsedge (Cyperus esculentus). Pelargonic acid was applied postdirected each year in mid-June and then reapplied 8 days later. The 15-lb/acre pelargonic acid treatment resulted in the maximum smooth crabgrass control (56%) and broadleaf weed control (66%) at 1 day after the initial spray treatment (DAIT), and 33% yellow nutsedge control at 3 DAIT. Pelargonic acid at 15 lb/acre provided equal or slightly greater smooth crabgrass and broadleaf (cutleaf groundcherry and spiny amaranth) control compared with the 10-lb/acre application, and consistently greater control than the 5-lb/acre rate and the weedy control. Pelargonic acid was less effective at controlling yellow nutsedge than smooth crabgrass and broadleaf weeds. As the rate of pelargonic acid increased from 5 to 15 lb/acre, yellow nutsedge control also increased significantly for all observation dates. Increasing the pelargonic acid application rate increased the crop injury rating. The maximum crop injury occurred for each application rate at 1 DAIT with 7%, 8.0%, and 13.8% injury for pelargonic acid rates 5, 10, and 15 lb/acre, respectively. There was little or no new crop injury after the second postdirected application of pelargonic acid and crop injury following 3 DAIT for application rates was 2% or less. Only the 15-lb/acre pelargonic acid application produced greater fruit per hectare (4784 fruit/ha) and yields (58.65 kg·ha−1) than the weedy control (1196 fruit/ha and 19.59 kg·ha−1). The weed-free yields (7176 fruit/ha, 178.11 kg·ha−1, and 24.82 g/fruit) were significantly greater than all pelargonic acid treatments and the weedy control. Pelargonic acid provided unsatisfactory weed control for all rates and did not significantly benefit from the sequential applications. The authors suggest the pelargonic acid be applied to smaller weeds to increase the weed control to acceptable levels (>80%).

Open access

Fekadu Fufa Dinssa, Peter Hanson, Dolores R. Ledesma, Ruth Minja, Omary Mbwambo, Mansuet Severine Tilya, and Tsvetelina Stoilova

c , 2004d , 2004e ); prince’s feather ( Amaranthus hypochondriacus ), spiny amaranth or thorny pigweed ( Amaranthus spinosus ), and green amaranth or pigweed ( Amaranthus viridis ) ( Jansen, 2004a , 2004b , 2004c ); and Mediterranean amaranth

Free access

Dennis C. Odero, Jose V. Fernandez, and Nikol Havranek

control and 100% being crop death or complete weed control at 14 and 28 DAT. Prevalent weed species were common lambsquarters ( Chenopodium album L.), spiny amaranth ( Amaranthus spinosus L.), and fall panicum ( Panicum dichotomiflorum Michx.) at

Full access

Orville C. Baldos, Joseph DeFrank, and Glenn Sakamoto

, natural areas, grazed areas, and industrial vegetation management areas such as roadsides ( Senseman, 2007 ). It is a selective herbicide used for controlling key broadleaf weeds, including spiny amaranth ( Amaranthus spinosus ) and beggarticks ( Bidens

Full access

Orville C. Baldos, Joseph DeFrank, and Glenn Sakamoto

rubber ( Hevea brasiliensis ) as well as in natural areas, rangelands, permanent grass pastures, and industrial vegetation management areas such as roadsides ( Senseman, 2007 ). Weed species controlled by aminopyralid include spiny amaranth ( Amaranthus

Full access

Megh Singh, Mayank Malik, Analiza H.M. Ramirez, and Amit J. Jhala

broadleaf weeds infesting the experimental site at Lake Alfred, FL, included florida/brazil pusley, spanishneedles, common purslane ( Portulaca oleracea ), dogfennel ( Eupatorium capillifolium ), spiny amaranth ( Amaranthus spinosus ), and common ragweed