Search Results

You are looking at 1 - 10 of 13 items for :

  • "zero leach" x
  • Refine by Access: All x
Clear All
Free access

Trisha Blessington Haley and David Wm. Reed

Two experiments were conducted to investigate the effect of K fertilizer rates on growth of New Guinea impatiens (Impatiens Hawkeri Bull.), vinca (Catharanthus roseus (L.) G. Don) and petunia (Petunia ×hybrida Hort. Vilm.-Andr.) in a recirculating subirrigation system. Based on a variety of growth parameters, a broad range of K concentrations allowed maximum growth, notably 1 to 6 mM for New Guinea impatiens `Ovation Salmon Pink Swirl', 2 mm for New Guinea impatiens `Cameo' and `Illusion', 2 to 8 mm for vinca `Pacifica Apricot', and 2 to 16 mm for petunia `Trailing Wave Misty Lilac'. Thus, the lowest concentration that allowed maximum growth was 1 to 2 mm K. A third experiment compared the optimum K concentration and K balance of vinca grown with recirculating subirrigation versus top-watering. Based on a variety of growth parameters of vinca `Pacifica Red', the lowest concentration that allowed maximum growth was 2 mm K with recirculating subirrigation and 4 mm K with top-watering. The K balance demonstrated that subirrigated plants were twice as efficient in K use compared to the top-watered plants. Leachate loss was the major contributor to inefficiency in top-watered plants. Electrical conductivity (EC) of the growing medium remained below the recommended level of 1.2 dS·m-1 in both irrigation methods at K concentrations of 16 mm and below in the bottom layer and 8 mm and below in the middle layer. In the top layer of the growing medium, EC was above the recommended level at all K concentrations tested in subirrigation at all concentrations, and in top-watering at 16 mm and above.

Free access

JiWeon Lee and Paul V. Nelson

Tomato `Marglobe' seed were sown on germination paper in enclosed plastic dishes in a growth room Ammonium was more toxic when applied as the single salt, ammonium sulfate, than when applied as part of a complete Hoagland solution. The lowest toxic ammonium levels were for the single salt 1.5 mM and for the complete solution 4.5 mM. Symptoms included reduced length of primary and particularly lateral roots, reduced numbers of root hairs, and chlorosis, distortion, and slower development of cotyledons. Tomato `Marglobe' seedlings were also grown in 288 cell plug trays in a substrate of 3 sphagnum peat moss and 1 perlite containing no N, P, or K but amended with dolomitic limestone to pH 6.0 They were fertilized every third watering with 4 mM NH4 + NO3, 0.4 mM PO4, and 1.2 mM K from 15 to 28 days after sowing and at double this concentration from 29 to 42 days. A zero leaching percentage was practiced. Ammoniacal-N comprised 25, 50, or 75% of total N. There were no effects of ammonium on root or shoot weights, height or appearance of plants through this period. Plant growth was limited throughout this period by N stress in accordance. with commercial practice. After 42 days N stress was alleviated by again doubling the nutrient solution concentration and applying it with every watering. Ammonium toxicity developed with symptoms of shorter plant height, general chlorosis of lower leaves, and necrosis of the base of lower leaves.

Free access

Nancy K. Todd and David Wm. Reed

Concerns over groundwater contamination due to greenhouse runoff have caused many growers to turn to subirrigation as an alternative watering method. One reported problem is the movement of salts to the top layer of the rootzone due to zero leaching. Many growers are faced with the added challenge of subirrigating plants with poor-quality water than contains a high salt content before the addition of fertilizer. An experiment was conducted to investigate the movement of salts in the root zone and the effects on root development and overall plant growth. Plants were grown using water treated with NaCl + CaCl2 (1:1 equivalent basis) at the following total concentrations: 0, 2, 4, 6, 8, 10, 14, and 18 mM. Treatment time was 10 weeks (marketable stage). At harvest, height was measured and plants were cut off at the soil line and divided into shoots (stems and leaves) and roots for fresh and dry weight. Leaf area was measured. The root zone was divided into three layers—top, middle, and bottom (≈3 cm each). Roots were separated from each soil layer and soil samples collected for measuring EC and pH using 1:2 dilution. Soil samples showed EC in the top layer of the root zone was much higher than the middle and bottom layers. Root weight also decreased substantially in the top layer of the root zone. Height, FW, DW, and leaf area of plants did decrease with increasing salt concentration, indicating that the detrimental effects of poor-quality water on subsequent plant growth, especially in a subirrigation system.

Free access

JinSheng Huang and Paul V. Nelson

It is desirable to have a large root mass and compact shoot in the final stage of plug seedling production. Marigold `Discovery Orange' was grown for six weeks from sowing in a hydroponic system. Hoagland's all nitrate solution was used at 0.25X for the first three weeks and 0.5X for the final three weeks. P was applied continuously in the control and was eliminated for the first one or three weeks in the two stress treatments. Weekly mot and shoot dry weights indicated: a.) P stress caused an increase in root/shoot ratio with roots larger than in the control plants and b.) restoration of P after a P stress resulted in a rapid shift of root/shoot ratio back to the control level with final root and shoot weights less than in the control plants. A continuous marginal P stress or a stress near the end of seedling production is suggested. Tomato `Marglobe' was grown for five weeks and impatiens `Super Elfin White' for six weeks in a 3 sphagnum peat moss: 1 perlite substrate in 288 cell plug trays. Fertilizer was applied at every third watering at a zero leaching percentage. The control nutrient ratio (mM) was 5.4 NH4+ NO3: 0.5 PO4: 1.6 K while the low P treatments contained 0.15, 0.1, and 0.05 mM PO4 throughout the experiment. The root/shoot dry weight ratios increased in the low P treatments. Tomato plants at 0.15 and 0.1 mM P and impatiens plants at 0.15 mM P had larger roots than the control plants. A continuous stress at 0.15 mM PO4 appears promising.

Full access

Stuart L. Warren and Ted E. Bilderback

Irrigation of container-grown ornamental crops can be very inefficient, using large quantities of water. Much research was conducted in the 1990s to increase water efficiency. This article examined water management, focusing on three areas: water application efficiency (WAE), irrigation scheduling, and substrate amendment. Increases in WAE can be made by focusing on time-averaged application rate and pre-irrigation substrate moisture deficit. Irrigation scheduling is defined as the process of determining how much to apply (irrigation volume) and timing (when to apply). Irrigation volume should be based on the amount of water lost since the last irrigation. Irrigation volume is often expressed in terms of leaching fraction (LF = water leached ÷ water applied). A zero leaching fraction may be possible when using recommended rates of controlled-release fertilizers. With container-grown plant material, irrigation timing refers to what time of day the water is applied, because most container-grown plants require daily irrigation once the root system exploits the substrate volume. Irrigating during the afternoon, in contrast to a predawn application, may increase growth by reducing heat load and minimizing water stress in the later part of the day. Data suggest that both irrigation volume and time of application should be considered when developing a water management plan for container-grown plants. Amending soilless substrates to increase water buffering and reduce irrigation volume has often been discussed. Recent evidence suggests that amending pine bark substrates with clay may reduce irrigation volume required for plant production. Continued research focus on production efficiency needs to be maintained in the 21st century.

Full access

Jeff Million, Tom Yeager, and Claudia Larsen

result of differences in azalea growth response to irrigation method at the N rates of 1.5 lb/yard 3 and 2.0 lb/yard 3 . At N rates of 1.5 lb/yard 3 and 2.0 lb/yard 3 , shoot dry weight was reduced with OVR, but not SUB and WCK. Under the zero-leach

Full access

Sueyde F. de Oliveira, Paul R. Fisher, Jinsheng Huang, and Simone da C. Mello

grown with near-zero leaching, using collection saucers for reabsorption of any leachate by the plants. At the end of the experiment, total volume of water applied was 5.4 L per plant. The pour-through method ( Whipker et al., 2011 ) was used for

Free access

Juana C. García-Santiago, Luis A. Valdez-Aguilar, Armando Hernández-Pérez, Andrew D. Cartmill, and Jesús Valenzuela-García

quality: A review Agr. Agr. Sci. Proc. 3 283 288 Reed, D.W. 1996 Closed production systems for containerized crops: Recirculating subirrigation and zero-leach system, p. 221–245. In: D.W. Reed (ed.). Water, media and nutrition for greenhouse crops. Ball

Free access

Stephanie E. Burnett and Marc W. van Iersel

impact of the water source. Further research in the future should closely examine the impact of zero-leach or low-leach irrigation systems on substrate EC and pH over time. Plant growth and morphology. Stem length increased with increasing Θ set

Free access

Mindy L. Bumgarner, K. Francis Salifu, and Douglass F. Jacobs

alternative, yielding equal or better plant growth and nutrition at increased water use efficiency with zero leaching losses. Literature Cited Barrett, J. 1991 Water and fertilizer movement in greenhouse subirrigation systems