Search Results

You are looking at 1 - 10 of 54 items for :

  • "winterkill" x
  • Refine by Access: All x
Clear All
Full access

Aaron Heinrich, Richard Smith, and Michael Cahn

seeded in November so that fall rains can germinate the crop and are incorporated in March to prepare for spring planting. By winter-killing the cover crop in early January with an herbicide, growers may be able to experience the benefits of a cover crop

Full access

Orion P. Grimmer and John B. Masiunas

Winter-killed cover crops may protect the soil surface from erosion and reduce herbicide use in an early planted crop such as pea (Pisum sativum). Our objective was to determine the potential of winter-killed cover crops in a snap pea production system. White mustard (Brassica hirta) produced the most residue in the fall but retained only 37% of that residue into the spring. Barley (Hordeum vulgare) and oats (Avena sativa) produced less fall residue but had more residue and ground cover in the spring. Greater ground cover in the spring facilitated higher soil moisture, contributing to higher weed numbers and weight and lower pea yields for oat and barley compared with a bare ground treatment. White mustard had weed populations and pea yields similar to the bare ground treatment. Within the weed-free subplot, no differences in pea yields existed among cover crop treatments, indicating no direct interference with pea growth by the residues. In greenhouse experiments, field-grown oat and barley residue suppressed greater than 50% of the germination of common lambsquarters (Chenopodium album) and shepherd's-purse (Capsella bursapastoris), while in the field none of the cover crop provided better weed control than the fallow.

Free access

J.M. Caprio, H.A. Quamme, and R. Berard

Winter freeze events, identified by horticulturists to lower yields or kill trees (estimates vary by year from 1000 to >200,000 trees), have occurred in the Okanagan Valley of British Columbia 18 times in 94 years (1 in 5 years). To determine the association of winter temperatures and production, 72 years (1920–91) were separated into quartiles by level of production. Then, a maximum χ2 value was produced by a scanning iterative technique comparing each of the extreme quartiles with the combined mid-quartiles. A strong association was found between level of production and the low minimum temperatures in November, December, and February but not January. This result agrees with the historical records that indicate three winter-kill events occurred in November, five in December, one in January, and three in February during the same time period. Warm temperatures in September were associated with low production, indicating the possibility that warm temperatures at this time delay acclimation. Warm temperatures in January also were associated with low production, indicating a possible effect in hastening deacclimation.

Free access

Francis X. Mangan and Stephen J. Herbert

Field research was conducted in Deerfield, Mass. to study the effects of leguminous cover crops on sweet corn yield. Oat was planted alone and in combination with four leguminous cover crops August 8, 1990. Cover crop residue was disked once and sweet corn seeded April 23, 1991. Each cover crop combination had three rates of nitrogen added in two applications. Sweet corn seeded into stands of hairy vetch (Vicia villosa) yielded the highest of the cover crop combinations. All leguminous cover crop treatments yielded higher than oat alone or no cover crop when no synthetic nitrogen was added. Cover crop combinations were seeded again in the same field plots August 12, 1991. Oat biomass in November was greater where there had been leguminous cover crops or high rates of synthetic nitrogen. Legume growth was retarded in the plots that had previously received high nitrogen. It is thought that legume growth was reduced in the high nitrogen treatments due to increased oat growth and higher soil nitrogen levels which could inhibit root nodulation.

Free access

J.M. Goatley Jr., V.L. Maddox, D.L. Lang, R.E. Elmore, and B.R. Stewart

The ability of a temporary turf cover and foliar-applied iron (Fe) to sustain or promote bermudagrass (Cynodon dactylon (L.) × transvaalensis Burtt-Davy `Tifway' growth beyond its normal growing periods in central Mississippi was evaluated during the fall, winter, and spring seasons of 1998-2001. The application of a polypropylene turf blanket when night temperatures were predicted to be ≤4 °C extended acceptable bermudagrass turf quality by 5 to 8 weeks in the fall and winter period as compared to the uncovered control plots. Also, complete green-up of the turf occurred 4 to 6 weeks earlier the following spring. There was no enhancement in bermudagrass quality by temporarily covering at predicted night temperatures of ≤15 or ≤9.5 °C. Foliar applied iron (Fe) further enhanced turf quality in the fall and winter months, but resulted in no visible turf response the following spring. Total nonstructural carbohydrate (TNC) concentrations in rhizomes that were sampled during November, January, and April 2000 and 2001 were generally increased by the cover application as compared to the uncovered control. Foliar Fe applications did not influence TNC levels.

Free access

J.L. Nus and K. Shashikumar

Although the effect of cold winters on the severity of bermudagrass (Cynodon dactylon Pers.) spring dead spot (SDS) has been studied, information is needed concerning the effect of infection by fungi associated with SDS on the host's freezing resistance. A-22 bermudagrass was inoculated with Leptosphaeria korrae J. Walker & A.M. Smith and Ophiospharella herpotricha (Fr.) J. Walker & A.M Smith. Differential thermal analysis was used to monitor exotherm temperatures of healthy and O. herpotricha- and L. korrae-infected A-22 bermudagrass at 10-day intervals during 90 days of acclimation in cold chambers. Healthy bermudagrass crowns supercooled to an average of -6.7C and fungi-infected crowns supercooled to an average of -4.8 and -4.4C, respectively. Healthy crown exotherm temperatures were significantly lower than those of fungi-infected bermudagrass crowns on all nine sampling dates. This result indicates that fungi-infected plants are more susceptible to cold damage.

Open access

Candi Ge, Chanjin Chung, Tracy A. Boyer, and Marco Palma

specific attribute(s) in more than half of the 12 choice tasks. Price was the most ignored attribute. Our respondents value drought tolerance the most, followed by shade tolerance, winterkill reduction, salinity tolerance, and lastly, a 10% maintenance cost

Free access

John C. Stier, Eric J. Koeritz, and Mark Garrison

and avoid either winterkill or high temperature (summer) stress of immature plants, recommendations are to plant C 3 turfgrasses in late summer, although dormant (late fall) or spring seedings are often used out of necessity or convenience ( Stier

Free access

J.M. Goatley Jr., V.L. Maddox, and K.L. Hensler

Bermudagrass turfs in the southern United States often receive late growing season applications of nitrogen (N) in order to sustain turfgrass color prior to dormancy, even though such applications might increase winterkill potential. Yearly research trials were initiated in the last week of Sept. 1989 to 1991 at Mississippi State Univ. to evaluate fall and spring color responses and rhizome levels of total nonstructural carbohydrates (TNC) of `Tiflawn' and Arizona (AZ) Common bermudagrass [Cynodon dactylon L. (Pers.)] treated with various N sources delivering N at 98 kg·ha-1 in a single application. The fertilizers were ammonium nitrate (AN), sulfur-coated urea (SCU), a natural organic (`Milorganite', NO), isobutylidene diurea (IBDU), ureaformaldehyde (UF), and methylene urea (MU). Color responses from N fertilization were most prominent in the fall except when there was an early frost event in Oct. 1990. The most rapid greening response and highest color ratings were consistently observed for the water-soluble AN. Of the slow-release sources, SCU, MU, and IBDU provided color responses as long as temperatures remained warm enough to promote bermudagrass growth. The NO source provided an unexpected, significant greening response in Oct. 1989 and 1991 on `Tiflawn', but not on AZ Common. The UF consistently provided the lowest color ratings. There were virtually no differences in TNC levels between N treatments for either grass. At no time was there any indication that N fertilization increased bermudagrass winterkill potential; to the contrary, the predominant responses were better fall and spring color than the nontreated control.

Full access

Orion P. Grimmer and John B. Masiunas

Winter-killed oats (Avena sativa) may have potential for use to suppress weeds in early seeded crops such as pea (Pisum sativum). Residue biomass and surface coverage are generally correlated with weed suppression. Oat residues also contain allelochemicals. Our objective was to determine if oat cultivars vary in residue production and allelopathy. Differences between oat cultivars were observed in residue production, and for effects on emergence of common lambsquarters (Chenopodium album) and shepherd's-purse (Capsella bursa-pastoris) in the greenhouse, and germination of pea and common lambsquarters in an infusion assay. Two of the oat cultivars producing the greatest biomass, `Blaze' (in the field) and `Classic' (in the greenhouse), interfered minimally with pea germination and were among the best cultivars in inhibiting common lambsquarters and shepherd's-purse. `Blaze' also greatly inhibited common lambsquarters germination in the infusion assay that measured allelopathy. Thus, `Blaze' and `Classic' possess suitable characteristics for use as a cover crop preceding peas.