Search Results

You are looking at 1 - 10 of 130 items for :

  • "warm-season turfgrass" x
Clear All
Full access

Manuel Chavarria, Benjamin Wherley, James Thomas, Ambika Chandra and Paul Raymer

were to evaluate comparative salinity tolerance and recovery attributes after salinity stress among 10 commonly used warm-season turfgrass cultivars representing bermudagrass, zoysiagrass, st. augustinegrass, and seashore paspalum. Material and Methods

Free access

Junqin Zong, Yanzhi Gao, Jingbo Chen, Hailin Guo, Yi Wang, Fan Meng, Yiwei Jiang and Jianxiu Liu

warm-season turfgrass species exposed to waterlogging stress and to examine anaerobic and antioxidant metabolism in relation to waterlogging tolerance. The outcome of this study would provide a basis for selecting appropriate species for turfgrass sites

Full access

James T. Brosnan and Gregory K. Breeden

pyrimisulfan with penoxsulam may provide turfgrass managers a new option for broadleaf and sedge weed control in warm-season turfgrass. Hoyle (2017) reported that pyrimisulfan + penoxsulam was safe for use on both buffalograss ( Bouteloua dactyloides , cv

Free access

Kurt Steinke, David R. Chalmers, Richard H. White, Charles H. Fontanier, James C. Thomas and Benjamin G. Wherley

As a result of increasing demand for potable water, local and national initiatives to conserve municipal water supplies have been implemented. Many of these initiatives focus on reducing irrigation of turfgrass in urban landscapes and may totally ban irrigation during periods of severe water shortage. Proper selection of adapted turfgrass species and cultivars is vital to long-term water conservation initiatives. Turfgrasses that can survive and recover from extended hot and dry periods under limited to no irrigation would best meet water conservation objectives. The present study was conducted to evaluate the recuperative potential of transplanted plugs of 24 commonly grown cultivars of three warm-season turfgrass species after incremental increases in water stress imposed by withholding all water for up to 60 days. A 2-year field study was conducted consisting of eight blocks containing 25 plots each. Each block was planted with one plot each of eight cultivars of bermudagrass (Cynodon dactylon sp.), seven cultivars of st. augustinegrass (Stenotaphrum secundatum sp.), and nine cultivars of zoysiagrass (five of Zoysia japonica sp. and four of Zoysia matrella sp.). Four blocks were planted on native soil with no restriction to rooting, whereas the other four had an effective root zone of only 10 cm of soil. Cup cutter plugs were collected at predetermined intervals, transported to College Station, TX, replanted, and grown under well-watered conditions. Measurements of the lateral spread of the plugs were taken every 10 to 14 days for the first 60 to 70 days after planting (DAP). The lateral spread of plugs collected after 0 days of summer dry-down (DSD) was greatest for bermudagrass, intermediate for st. augustinegrass, and lowest for zoysiagrass. In most cases there were no consistent differences between cultivars within a species. All species grown on the 10-cm deep root zone were unable to survive the 60-day period without water and died within the first 40 days. For each species, lateral spread was increasingly delayed or reduced with increasing DSD. Although all three species grown on native soil were able to survive and recover from a 60-day period without water, the bermudagrass cultivars had the most rapid recovery rates measured as lateral spread of transplanted plugs.

Full access

Filippo Lulli, Claudia de Bertoldi, Roberto Armeni, Lorenzo Guglielminetti and Marco Volterrani

Synthetic sports surfaces are increasingly subject to standardization of athlete-surface and ball-surface interactions (playability parameters). Such standardizations have led to an increase in the level of the engineering and predictability of these surfaces, and as such may be beneficial also for natural turf. In warm and temperate climates, many natural turf sports surfaces are established with warm-season (C4) turfgrass species due to their suitability to the environment in such areas. This study was aimed at evaluating the Féderation Internationale de Football Association (FIFA)-standard playing characteristics of different sports turf surfaces obtained from three commonly used C4 turfgrass species: 1) ‘Tifway 419’ hybrid bermudagrass (Cynodon dactylon var. dactylon × C. transvaalensis), 2) ‘Zeon’ manilagrass (Zoysia matrella), and 3) ‘Salam’ seashore paspalum (Paspalum vaginatum) for factors concerning leaf tissue (silica, lignin, water content) and canopy structure (shoot density, leaf architecture, stolon density, etc.). Results showed that surfaces of different C4 turfgrass species generate different playability parameters, with seashore paspalum being a harder faster surface, manilagrass being a softer slower surface, and hybrid bermudagrass showing intermediate characteristics. These playing quality results were associated with certain specific canopy biometrical/morphological parameters such as shoot density, horizontal stem density (HSD), leaf section, and, to a lesser extent, to certain plant tissue compounds (lignin, silica).

Full access

K.L. Hensler, B.S. Baldwin and J.M. Goatley Jr.

A bioorganic fiber seeding mat was compared to traditional seeding into a prepared soil to ascertain any advantages or disadvantages in turfgrass establishment between the planting methods. Bahiagrass (Paspalum notatum), bermudagrass (Cynodon dactylon), carpetgrass (Axonopus affinis), centipedegrass (Eremochloa ophiuroides), st. augustinegrass (Stenotaphrum secundatum), and zoysiagrass (Zoysia japonica) were seeded at recommended levels in May 1995 and July 1996. The seeding methods were evaluated under both irrigated and nonirrigated conditions. Plots were periodically rated for percent turf coverage; weed counts were taken about 4 weeks after study initiation. Percent coverage ratings for all grasses tended to be higher for direct-seeded plots under irrigated conditions in both years. Bermudagrass and bahiagrass established rapidly for both planting methods under either irrigated or nonirrigated conditions. Only carpetgrass and zoysiagrass tended to have greater coverage ratings in nonirrigated, mat-seeded plots in both years, although the percent plot coverage ratings never reached the minimum desired level of 80%. In both years, weed counts in mat-seeded plots were lower than in direct-seeded plots. A bioorganic fiber seeding mat is a viable method of establishing warm-season turfgrasses, with its biggest advantage being a reduction in weed population as compared to direct seeding into a prepared soil.

Free access

Edward W. Bush, James N. McCrimmon and Allen D. Owings

Four warm-season grass species [common carpetgrass (Axonopus affinis Chase), common bermudagrass (Cynodon dactylon [L.] Pers.), St. Augustinegrass (Stenophrum secondatum Walt. Kuntze.), and zoysiagrass (Zoysia japonica Steud.)] were established in containers filled with an Olivia silt loam soil for 12 weeks. Grasses were maintained weekly at 5 cm prior to the start of the experiment. Water stress treatments consisted of a control (field capacity), waterlogged, and flooded treatments. Waterlogging and flood treatments were imposed for a period of 90 days. The effects of water stress was dependent on grass species. Bermudagrass vegetative growth and turf quality were significantly reduced when flooded. Carpetgrass, St. Augustingrass, and zoysiagrass quality and vegetative growth were also reduced by flooding. St. Augustinegrass and zoysiagrass root dry weight was significantly decreased. Zoysiagrass plants did not survive 90 days of flooding. Leaf tissue analysis for common carpetgrass, common bermudagrass, St. Augustinegrass, and zoysiagrass indicated that plants subjected to waterlogging and flooding had significantly elevated Zn concentrations.

Free access

R.L. Green, J.B. Beard and M.J. Oprisko

Root hairs contributed variously to total root length, ranging from a low of 1% for `Emerald' zoysiagrass (Zoysia japonica Steud. x Z. tenuifolia Willd. ex Trin) and 5% for `Georgia Common' centipedegrass [Eremochloa ophiuroides (Munro.) Hack], to a high of 95% and 89% for `Texturf 10' and `FB 119' bermudagrasses [Cynodon dactylon (L.) Pers.], respectively. Genotypes ranking highest for root lengths with root hairs also ranked highest for root lengths without root hairs and for number of main roots per plant. In terms of root lengths with root hairs, first-order lateral roots contributed more to total root length than root lengths of either main roots or second-order lateral roots for all nine genotypes. Number and length of root hairs arising from either main or lateral roots were not significantly affected by their relative distance from the cap of the main root. `Texturf 10' and `FB 119' bermudagrasses ranked highest for root and root-hair extent.

Free access

John B. Stiglbauer, Haibo Liu, Lambert B. McCarty, Dara M. Park, Joe E. Toler and Kendal Kirk

practical. Planting time, fertilizer input, and sprigging rates affect warm-season turfgrass establishment speed and quality depending on location ( Guertal and Hicks, 2009 ; Patton et al., 2004 ; Richardson and Boyd, 2001 ). Increased nitrogen (N

Free access

Maria P. Fuentealba, Jing Zhang, Kevin E. Kenworthy, John E. Erickson, Jason Kruse and Laurie E. Trenholm

., 1995 ). Common bermudagrass and zoysiagrass are widely used as warm-season turfgrass species in the southern United States for landscapes and sport fields ( Trenholm et al., 2000 ; Unruh et al., 2013 ). African bermudagrass, indigenous to the Transvaal