Search Results

You are looking at 1 - 4 of 4 items for :

  • "velvet flower" x
Clear All
Full access

Chiwon W. Lee

Velvet flower (Salpiglossis sinuata, Solanaceae) can be used as an excellent demonstration plant for horticultural crop breeding classes. Salpiglossis produces large trumpetlike flowers exhibiting an assortment of corolla colors and pigmentation patterns. The pistil is large (3 to 4 cm or 1.2 to 1.6 inches long) with a sticky stigmatal tip and flowers can be easily emasculated prior to anthesis. The large pollen grains are shed in tetrads which can be separated and placed on the stigmatal surface. It takes eight to nine weeks from seeding to blooming, with a prolific flowering cycle that comes in flushes. Numerous seeds (about 750 per capsule) are obtained in three weeks after self- or cross-pollination. The influences of three genes that control flower color and pigmentation pattern can be conveniently demonstrated with their dominant and recessive alleles. The R gene controls flower color with red (RR or Rr) being dominant over yellow (rr). The D gene controls the density of pigmentation with solid (DD or Dd) color being dominant over dilute (dd) color. Corolla color striping is controlled by the St gene with striped (stst) being recessive to nonstriped (StSt or Stst) pattern. By using diploid lines of genotypes RRDD (red, solid), RRdd (red, dilute), or rrdd (yellow, dilute) and their crosses, students can easily observe a dominant phenotypic expression in the F1 hybrid and the digenic 9:3:3:1 segregation ratio in the F2 progeny. Another gene (C) that controls flower opening can also be used to show its influence on cleistogamous (closed, selfpollinated, CC or Cc) versus normal chasmogamous (open-pollinated, cc) corolla development. In addition, the induction and use of polyploid (4x) plants in plant breeding can also be demonstrated using this species.

Free access

Douglas C Needham and Homer T. Erickson

Mean seed production in tetraploid × diploid crosses of Salpiglossis sinuata R et P. was similar to that in diploid × diploid crosses, but germination of the resultant triploid seeds was low (8%). Parental line selection resulted in some germination improvement. Triploid hybrids from these crosses were vigorous, with floral characteristics resembling tetraploids. The fertility indices of self-pollinations of triploids and pollinations by diploid and tetraploid plants were <1, 22, and 6, respectively, compared with 176 for diploid × diploid crosses. Thus, the self-pollinated triploids were virtually sterile.

Free access

Douglas C Needham and P. Allen Hammer

Salpiglossis sinuata R. et P., a floriferous member of the Solanaceae, was studied for potential as a flowering potted plant when modified by growth retardants. Seedlings of an inbred line P-5 were covered with black cloth for an 8-hour photoperiod to permit vegetative growth to ≈16 -cm-diameter rosettes. Plants were then exposed to an 18-hour photoperiod for the duration of study. Flowering occurred 40 days after the plants were transferred to long days. Neither spray applications of uniconazole at 10, 20, 40, or 100 ppm, nor chlormequat chloride at 750, 1500, or 3000 ppm significantly retarded plant height. Applications of daminozide, ranging in concentration from 1000 to 5000 ppm, alone and in combination with chlormequat chloride, were effective at retarding plant height; however, concomitant restriction of corolla diameter was frequently observed. Chemical names used: 2-chloro- N,N,N -trimethylethanaminium chloride (chlormequat chloride); butanedioic acid mono(2,2-dimethylhydrazide) (daminozide); and (E) -1-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl) -1-penten-3-01 (uniconazole).

Free access

Jong Suk Lee and Young A. Kim

Rose (Rosa hybrida) cvs. Red Velvet, First Red, Sonia, and Saphir stems harvested at bud stage were kept in deionized water or preservative solution (3% sucrose + 200 ppm HQS + 0.1 mM ethionine) at 21°C under continuous light (1200 lux). Vase life of `First Red' and `Saphir' was much longer than those of `Red Velvet' and `Sonia' held in deionized water. Severe bent-neck was observed in `Red Velvet' flowers held in deionized water in 8 days after harvest. Rose flowers held in preservative solution resulted in extended vase life and inhibited senescence and bent-neck in four cultivars. Neck strength of `First Red' and `Saphir' rose flowers having no bent-neck and long vase life was stronger than `Red Velvet' and `Sonia' having frequent bent-neck and short vase life. Neck strength was also increased by preservative solution. Faster changes of water balance to minus value were detected in the rose flowers held in deionized water than those held in preservative solution. `Red Velvet' flowers having much absorption of water but more transpiration caused a fast change to a minus value in water balance and early bent-neck. Cell sap pH gradually increased in petal and stem of rose cultivars during senescence. Cell sap pH of flowers held in distilled water were higher than those held in preservative solution. Increased cell sap pH of rose flowers caused rapid change to blueing and yellowing of petals.