Search Results

You are looking at 1 - 10 of 55 items for :

  • "unsaturated fatty acid" x
Clear All
Open access

Yuting Zou, Yanan Wang, Mingwei Zhu, Shuxian Li and Qiuyue Ma

oil content of the seeds, 90.0% of which is unsaturated fatty acids (UFAs). Among the UFAs, α-linolenic acid is the predominant type, accounting for 42.7% of the total content, which is substantially greater than that of traditional oil crops, such as

Free access

Diheng Zhong, Hongmei Du, Zhaolong Wang and Bingru Huang

with leaves that can be fully rehydrated within hours of rewatering after complete desiccation, unsaturated fatty acid composition increased under drought stress ( Navari-Izzo et al., 1995 ). An increase in fatty acid unsaturation level with drought

Full access

Emily B. Merewitz and Sha Liu

acids in plants. It is generally accepted that plants increase the amount of unsaturated fatty acids to reduce rigidity of membranes during preparation for cold conditions and increase saturated fatty acids to reduce fluidity of plant membranes before

Free access

Geoffrey Meru and Cecilia McGregor

heart-related ailments ( Wassom et al., 2008 ). Therefore, plant breeders aim to reduce the levels of saturated fatty acids while increasing the levels of unsaturated fatty acids in oil crops. On the contrary, increased levels of saturated fats are

Free access

Zhengrong Hu, Erick Amombo, Margaret Mukami Gitau, Aoyue Bi, Huihui Zhu, Liang Zhang, Liang Chen and Jinmin Fu

that maintenance of higher total UFAs composition, particularly linoleic acid, maybe superior prerequisite for superior chilling tolerance in WBD128. Fig. 5. Changes of ( A ) degree of unsaturation, ( B ) the ratio of unsaturated fatty acid (UFA) to

Free access

Arambage Abesinghe and James O. Garner

Storage roots of `Beauregard' and `Centennial' were used to identify varietal differences in fatty acid composition in plasmalemma lipids during storage conditions. Total plasmalemma fatty acid composition of glycolipids and phospholipids in storage roots of `Beauregard' and `Centennial' did not differ. The fatty acid composition of MGDG and DGDG in storage root plasmalemma was >50% unsaturated fatty acids in `Beauregard'. The high percentage of 18:2 (65.44%) fatty acid compared to `Centennial' (19.70%) and 79.35% total unsaturated fatty acid content in MGDG may contribute to low temperature tolerance in `Beauregard'. The higher percentages of 16:1 and 22:1 fatty acids in `Centennial' compared to `Beauregard' contributed to MGDG fatty acid unsaturation. However, these fatty acids have not been related to chilling tolerance.

Free access

Sameera Bafeel* and Frank Matta

Temperature is a major environmental factor governing the distribution of both wild and cultivated plant species. During acclimation and deacclimation plants undergo a series of metabolic changes that lead to cold hardiness or loss of hardiness. One of these changes is the accumulation of certain lipids. This research was conducted to compare hardiness among three pecan cultivars: `Desirable', `Jackson', and `Owens' growing under Mississippi condition and to determine the relationship between fatty acid levels and cold hardiness of pecan shoots. Differential thermal analysis (DTA), electrical conductivity, and tetrazolium tests were used to determine cold hardiness. Pecan stems were collected from September to March in 2002 and 2003 to determine cold acclimation and deacclimation. Fatty acid composition of pecan stems during this time period was determined by gas chromatography. DTA indicated that pecan stems acclimated in October and deacclimated in March. During cold acclimation, there was a shift in the fatty acid composition to more unsaturated fatty acids. The percentage of linoleic and linolenic fatty acids increased, while the percentage of palmitic and stearic fatty acids decreased. The correlation between unsaturated fatty acids and cold hardiness suggests that unsaturated fatty acid may play a role in membrane fluidity.

Free access

E.A. Baldwin and Bruce W. Woods

Pecans (Carya illinoinensis) are full of unsaturated fatty acids, which are subject to oxidative cleavage. This results in the development of rancid off-flavors, which render the nuts unmarketable. For this reason, pecans must be stored under costly refrigerated conditions. Furthermore, pecans usually undergo retail distribution and marketing at ambient conditions, which promote development of off-flavors. Application of cellulose-based edible coatings reduced off-flavor, and improved overall flavor scores while adding shine to the nuts during 14 months of storage under ambient conditions. Development of rancidity involves hydrolysis of glycerides into free fatty acids, oxidation of double bonds of unsaturated fatty acids to form peroxides and then autooxidation of the free fatty acids once the peroxides reach a sufficient level to perpetuate this reaction. One of the products of autooxidation is hexanal which is, thus, a good indicator of rancidity. Analysis of pecans by gas chromatography revealed that hexanal levels were reduced in coated nuts by 5- to over 200-fold compared to uncoated controls, depending on the coating treatment. Some of the coating treatments affected nut color, but overall flavor and appearance were improved by certain formulations.

Free access

Maria J. Berenguer, Paul M. Vossen, Stephen R. Grattan, Joseph H. Connell and Vito S. Polito

A comparative study was conducted to evaluate the influence of seven different levels of irrigation applied to `Arbequina I-18' olive (Olea europaea L.) trees grown in a super-high-density orchard (1,656 trees/ha) in the Sacramento Valley of California. Water was applied differentially by drip irrigation at rates of 15%, 25%, 40%, 57%, 71%, 89%, and 107% evapotranspiration (ETc) in 2002, and 28%, 33%, 55%, 74%, 93%, 117%, and 140% ETc in 2003. Each treatment was replicated three times. Olives were harvested on two different dates each year from each of 21 plots. Three of four harvest dates showed a decrease in maturity index with increasing irrigation levels. Oils were made from olive samples collected from each plot and analyzed for oil quality parameters. Total polyphenol levels and oxidative stability decreased as the trees received more water, especially for the three lowest irrigation treatment levels in 2002, but few differences were noted between treatments in 2003 when all the trees were irrigated more heavily. Average oxidative stability was correlated very closely with total polyphenol content with r 2 = 0.98 in 2002 and 0.94 in 2003. In 2002, free fatty acid levels increased and peroxide levels were unchanged, but in 2003, free fatty acid levels were unchanged and peroxide levels decreased in treatments receiving more water. Saturated fatty acids did not significantly change in 2002, due to tree irrigation level. The mono-unsaturated fatty acid levels and oleic–linoleic relationship declined while poly-unsaturated fatty acid levels increased in 2002 with increased irrigation. In 2003, there was no notable difference in the ratio of mono to poly unsaturated fatty acid levels. The individual fatty acid most consistently affected by more irrigation water was stearic, which decreased in both years. Total sterol content (mg·kg–1), percentages of cholesterol and erythrodiol were significantly influenced by tree irrigation levels, but increased in one year and either decreased or were unchanged the next. Oil sensory properties of fruitiness, bitterness, and pungency all declined in oils made from trees receiving more water. The lowest irrigation levels produced oils that were characterized by excessive bitterness, very high pungency, and woody, herbaceous flavors. Intermediate irrigation levels (33% to 40% ETc) produced oils with balance, complexity, and characteristic artichoke, grass, green apple, and some ripe fruit flavors. Higher irrigation levels lowered oil extractability and produced relatively bland oils with significantly less fruitiness and almost no bitterness or pungency.

Free access

Dehua Liu, Miklos Faust, Helen A. Norman, Merle Millard and Garry W. Stutte

Membrane lipids and cellular water states were studied in endodormant and paradormant apple buds. Paradormancy was overcome by thidiazuron while endodormant buds were forced to break after a certain period of chilling. Nuclear magnetic resonance imaging was used to determine water states in buds of different stages of dormancy. In endodormant buds, the changes in water states from a more tightly-bound to a more free form were correlated with changes in membrane fatty acid composition. The ratio of saturated/unsaturated fatty acids decreased with chilling, especially in C18:l/C18:3 molecular species of phosphatidylcholine and phosphatidylethanolamine. Bud lipase activity, which was assayed by in vitro hydrolysis of triglycerides, showed an abrupt increase after chilling treatments.