Search Results

You are looking at 1 - 10 of 25 items for :

  • "turfgrass injury" x
  • Refine by Access: All x
Clear All
Full access

Robert Andrew Kerr, Lambert B. McCarty, Matthew Cutulle, William Bridges, and Christopher Saski

to provide desired goosegrass control, yet minimizing undesirable turfgrass injury ( Abusteit et al., 1985 ; Elmore et al., 2011 ). The objectives of the trials were 1) evaluate turfgrass injury following use of POST goosegrass control options; 2

Free access

B.J. Johnson

A field experiment was conducted for 2 years to determine the effects of rate and time interval for repeated applications of the plant growth regulators (PGR) flurprimidol and paclobutrazol on vegetative suppression of `Tifway' bermudagrass [Cynodon transvaalensis Burtt-Davy × C. dactylon (L.) Pers.]. Suppression of vegetative growth of this grass was generally the same when either flurprimidol or paclobutrazol was applied twice after a 2-, 3-, or 4-week interval. The duration of growth suppression was also similar after initial application with flurprimidol at 0.84 kg·ha-l and repeated at 0.28 to 0.84 kg·ha-1 or with paclobutrazol applied initially at 1.1 kg·ha-1 an d repeated at 0.56 to 1.1 kg·ha-1. Both PGRs caused slight to moderate turfgrass injury at these rates, but the injury was temporary and the grass had fully recovered by 10 weeks. Chemical names used: α -(1-methylethyl)- α -[4-(trifluoromethoxy)-phenyl]-5-pyrimidinemethanol (flurprimidol); (±)-(R*R*) β -[(4-chlorophenyl)-methyl]- α -(1,1-dimethylethyl)-1H-1,2,4-triazole-l-ethanol (paclobutrazol).

Full access

Robert Andrew Kerr, Lambert B. McCarty, Philip J. Brown, James Harris, and J. Scott McElroy

. Developing management techniques to reduce turfgrass injury while maintaining herbicide efficacy is imperative for effective POST control of goosegrass within turfgrass stands. Immediately incorporating products via irrigation, or tank-mixing products such as

Free access

B.J. Johnson

A field experiment was conducted over 2 years to determine the effects of treatment dates with plant growth regulators (PGRs) on performance of `Tifway' bermudagrass [Cynodon transvaalensis Burtt-Davy] × [C. dactylon (L.) Pers.]. For flurprimidol at 0.84 kg·ha-1, the highest injury occurred from 16 or 28 June application in 1987 and from 17 May or June application in 1988. The injury was similar from treatment dates with flurprimidol + mefluidide or paclobutrazol + mefluidide. The PGRs were applied over a longer period in 1987 than 1988 without affecting vegetative suppression of `Tifway' bermudagrass. However, in 1988, the suppression from the 17 May treatment was equal to or better than that obtained when treatment dates were delayed until 1 June or later. Chemical names: α-(1 -methylethyl)- α -[4-(trifluoromethoxy)phenyl]-5-pyrimidinemethanol (flurprimidol); N -[2,4-dimethyl-5-[[(trifluoromethyl)sulfonyl]amino]phenyl]acetamide (mefluidide); (±)-(R*R*) β -[(4-chlorophenyl)-methyl]- α -(1,1-dimethylethyl)- 1H -1,2,4-triazole- 1-ethanol (paclobutrazol).

Open access

John E. Kaminski, Tim T. Lulis, and Travis R. Russell

develop best management practices to limit turfgrass injury and promote recovery. Therefore the objectives of this study were 1) to compare the phytotoxic effects of four hydraulic fluids of different types when applied to a creeping bentgrass putting

Free access

Daniel Hargey, Benjamin Wherley, Casey Reynolds, Richard White, and Garrett Parker

, surface hardness, and soil moisture attributes), turfgrass injury resulting from simulated traffic, and spring transition of ‘Tifway’ bermudagrass under a 1-day per week irrigation schedule. Materials and Methods This research was conducted at the Texas A

Free access

M. Fidanza, P. Colbaugh, H. Couch, M. Elliott, and S. Davis

Fairy ring has become a troublesome and persistent disease on golf course putting greens and other turf areas in most regions of the United States. Many basidiomycete fungi are associated with this destructive disease in turfgrass. Recent widespread epidemics of fairy ring have led investigators to examine possible management and control options. Curative approaches include topical flutolanil fungicide applications in conjunction with soil surfactants, the application of flutolanil under high-pressure injection, and the use of nitrogen fertility programs. These curative programs were effective at suppressing visual symptoms and turfgrass injury. A preventive approach evaluated repeat applications of flutolanil plus a soil surfactant prior to disease development. This preventive program was effective at eliminating visual disease symptoms on bermudagrass putting greens. Information presented will review results from field research studies conducted over the past 3 years in Florida, North Carolina, Ohio, Texas, and Virginia.

Full access

M.A. Fidanza, P.F. Colbaugh, M.C. Engelke, S.D. Davis, and K.E. Kenworthy

Fairy ring is a common and troublesome disease of turfgrasses maintained on golf course putting greens. Type-I fairy ring is especially destructive due to the development of hydrophobic conditions in the thatch and root zone, thus contributing to turfgrass injury and loss. The objective of this 2-year field study was to evaluate the application and novel delivery method of two fungicides and a soil surfactant for curative control of type-I fairy ring in a 20-year-old creeping bentgrass [Agrostis palustris (synonym A. stolonifera)] putting green. In both years, all treatments were applied twice on a 28-day interval. In 1998, flutolanil and azoxystrobin fungicides were applied alone and in combination with Primer soil surfactant by a conventional topical spray method, and fungicides without Primer applied via high-pressure injection (HPI). Acceptable type-I fairy ring control was observed in plots treated with flutolanil plus Primer, HPI flutolanil, azoxystrobin alone, azoxystrobin plus Primer, or HPI azoxystrobin. In 1999, treatments were HPI flutolanil, HPI flutolanil plus Primer, HPI azoxystrobin, HPI water only, and aeration only. Acceptable type-I fairy ring control was observed in plots treated with HPI flutolanil plus Primer or HPI azoxystrobin. HPI of fungicides alone or in combination with a soil surfactant may be a viable option for alleviating type-I fairy ring symptoms on golf course putting greens.

Full access

Lie-Bao Han, Gui-Long Song, and Xunzhong Zhang

Traffic stress causes turfgrass injury and soil compaction but the underlying physiological mechanisms are not well documented. The objectives of this study were to investigate the physiological responses of kentucky bluegrass (Poa pratensis), tall fescue (Festuca arundinacea), and japanese zoysiagrass (Zoysia japonica) to three levels of traffic stress during the growing season under simulated soccer traffic conditions. Relative leaf water content (LWC), shoot density, leaf chlorophyll concentration (LCC), membrane permeability, and leaf antioxidant peroxidase (POD) activity were measured once per month. The traffic stress treatments caused a reduction in LWC, shoot density, LCC, and POD activity, and an increase in cell membrane permeability in all three species. Japanese zoysiagrass had less electrolyte leakage, and higher POD activity and shoot density than both kentucky bluegrass and tall fescue. The results suggest that turfgrass tolerance to traffic stress may be related to leaf antioxidant activity. Turfgrass species or cultivars with higher leaf antioxidant activity may be more tolerant to traffic stress than those with lower antioxidant activity.

Full access

Ethan T. Parker, J. Scott McElroy, and Michael L. Flessner

Smooth crabgrass (Digitaria ischaemum) and goosegrass (Eleusine indica) are problematic weeds in creeping bentgrass (Agrostis stolonifera) because of limited herbicide options for postemergence (POST) control and turfgrass injury potential. Metamifop is a herbicide currently being considered for release to markets in the United States but information is lacking on the most effective rates and application timings for smooth crabgrass and goosegrass control in creeping bentgrass. Field trials were conducted in Auburn, AL in 2009 and 2013 to evaluate metamifop rates (200 to 800 g·ha−1) and single or sequential application timings compared with fenoxaprop (51 to 200 g·ha−1) at two different mowing heights. Metamifop applied twice and three times sequentially at 200 g·ha−1 provided the greatest smooth crabgrass (>97%) and goosegrass (>90%) control at rough (1½ inch) and green (1/8 inch) mowing heights without unacceptable creeping bentgrass injury at 56 days after initial treatment. All treatments caused <20% visible injury on creeping bentgrass at both mowing heights except the highest rate of metamifop. Smooth crabgrass control at the green mowing height was greater than at the rough mowing height, especially at lower metamifop rates with a single application.