Search Results

You are looking at 1 - 10 of 37 items for :

  • "trunk shaker" x
  • Refine by Access: All x
Clear All
Free access

Rosana Moreno, Diego S. Intrigliolo, Carlos Ballester, Cruz Garcerá, Enrique Moltó, and Patricia Chueca

could reduce the total costs in 30% to 35% ( Juste et al., 2000 ). Mechanical harvest with continuous canopy or trunk shakers has been used in citrus areas of Florida for years ( Roka et al., 2014a , 2014b ), where 95% of the orange crop is destined to

Free access

Kuo-Tan Li, Jim Syvertsen, and Jackie Burns

Mechanical harvesting using trunk shakers on late-season `Valencia' sweet orange [Citrus sinensis (L.) Osb.] trees can remove young fruit for the next crop and occasionally cause root exposure or severe bark scuffing on the trunk. To evaluate the effects of these physical injuries on fine root growth and lifespan, we installed minirhizotrons in the root zone of 15-year-old fruiting `Valencia' trees on Swingle citrumelo [C. paradise Macf. × Poncirus trifoliate (L.) Raf.] rootstocks. Images of roots against the minirhizotron tubes were captured biweekly with a custom-made video-DVD recorder system. Trees were harvested in early June by hand or with a linear-type trunk shaker in two consecutive years. Bark injury after trunk shaking was mimicked by removing part (42%) of the bark tissue from the main trunk with a sharp knife. Numbers of fine roots, root activity and lifespan as indexed by the color of the root, and the distribution of new fine roots after harvest were analyzed. Although root exposure was common with the normal operations during mechanical harvesting, few disturbances reached the major fine root zone. There was no clear correlation between root growth and trunk shaking with or without bark injury. The root system might benefit from less competition after the loss of young fruit from mechanical harvesting, as a greater availability of carbohydrates or other resources may compensate for any potential damage due to mechanical harvesting.

Free access

Kuo-Tan Li and James P. Syvertsen

1 To whom reprint requests should be addressed; e-mail ktli@ufl.edu . We thank John Crum from FMC Corp. for use of the trunk shaker and data acquisition systems. Fernando Alferez, Baylis Carnes, Jill Dunlop, Igor Kostenyuk, Luis Pozo, Ana Redondo

Free access

Jacqueline K. Burns, Fritz M. Roka, Kuo-Tan Li, Luis Pozo, and Richard S. Buker

An abscission agent (5-chloro-3-methyl-4-nitro-1H-pyrazole [CMNP]) at 300 mg·L–1 in a volume of 2810 L·ha–1 was applied to Valencia orange trees [Citrus sinensis (L.) Osb.] on 22 May 2004. At this time, immature and mature fruit were present on the tree simultaneously. Three days after application, fruit were mechanically harvested using a trunk-shake-and-catch system. The power to the shaker head was operated at full- or half-throttle (FT or HT, respectively), and the duration of trunk shaking was 2 seconds at FT or 4 seconds at FT and HT. Mature fruit removal percentage and number of immature fruit removed, and fruitlet weight and diameter were determined. Mature fruit removal percentage with 2 seconds at FT or 4 seconds at FT harvesting ±CMNP, or 4 seconds at HT + CMNP was not significantly different and ranged between 89% to 97%. Harvesting at 4 seconds HT without CMNP removed significantly less mature fruit than any treatment. CMNP did not affect immature fruit removal by the trunk shaker. Harvesting at 4 seconds at HT removed significantly less immature fruit than 2 seconds at FT or 4 seconds at FT. No significant difference in fruitlet weight or diameter was measured between any trunk shaker harvest operation and CMNP treatment. Trunk shaking frequency was estimated to be 4.8 and 8.0 Hz at HT and FT, respectively. Yield in 2005 was determined on the same trees used for harvest treatments in 2004. CMNP did not impact yield. No significant difference in yield was seen between the hand-picked control and 4 seconds at HT, whereas yield in the remaining treatments was lower. The results demonstrate that CMNP application combined with low frequency trunk shaker harvesting can achieve high percentage of mature fruit removal with no significant impact on return yield of the following crop.

Full access

Muhammad Farooq, Masoud Salyani, and Jodie D. Whitney

Field experiments were conducted to investigate the effect of sprayer type, airflow rate, and nozzle output on deposition of active ingredient and mechanical harvesting of `Valencia' orange (Citrus sinensis). Fruit detachment force (FDF) and percentage of fruit removal (PFR) by trunk shaker were used as mechanical harvesting parameters. A PowerBlast sprayer discharging radially and a Titan sprayer discharging over the entire canopy were used. The spray mixture contained an abscission chemical (CMN-pyrazole), a surfactant (Kinetic) and a fluorescent tracer (Pyranine-10G). Deposition was determined at three different heights outside and inside of the canopy. With the PowerBlast, higher airflow and lower nozzle output reduced deposition of the active ingredient. The mean FDF of sprayed treatments was less than that of the non-sprayed control but the difference among the four spray treatments was not significant. The lower airflow rate with lower nozzle output had higher PFR than that of the control. With the Titan sprayer, the mean deposition at lower airflow was similar to or higher than the higher airflow. At higher airflow, the lower nozzle output gave higher mean deposition. The Titan sprayer treatments resulted in less FDF than the control. At both airflow rates, the FDF was less at lower nozzle output than at higher nozzle output. The PFR of these treatments were not different from that of control.

Full access

Jacqueline K. Burns, Richard S. Buker III, and Fritz M. Roka

An abscission agent [5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP)] was applied to `Hamlin' and `Valencia' orange (Citrus sinensis) trees at concentrations ranging from 0 to 500 ppm in a volume of 300 gal/acre. Four days after application, fruit were mechanically harvested with either a trunk shake-and-catch or a continuous canopy shake-and-catch system commercially used in Florida. Harvesting conditions were varied by limiting the actual trunk shake time of the trunk shaker to 2, 4, or 7 seconds, or by altering the ground speed of the canopy shaker (1.0, 1.5, or 2.0 mph). In general, increasing duration of shake and the application of CMNP increased percent mature fruit removal and decreased the amount of fruit remaining in the tree. Increasing CMNP concentration decreased fruit detachment force but increased post-spray fruit drop. Comparison of short duration shake times in CMNP-applied trees with trees harvested at longer durations either sprayed or not sprayed with CMNP indicated no significant difference in percent mature fruit removal. The results demonstrate that CMNP application increases harvesting capacity of trunk and canopy shakers by reducing time necessary to harvest each tree while maintaining high percent mature fruit removal.

Full access

Jesús A. Gil-Ribes, Louise Ferguson, Sergio Castro-Garcia, and Gregorio L. Blanco-Rodán

publication. The funding support is generally from the commodity organizations, though national funding is possible. The creation of a prototype is not usually necessary. A good example is the adaptation of the trunk shakers used in bush and vine crops for

Free access

D.M. Glenn, D.L. Peterson, and S.S. Miller

This study evaluated the total and marketable yield of three peach cultivars [Prunus persica (L.) Batsch. `Autumnglo', `Harvester', and `Redhaven'] when mechanical pruning and harvesting systems were used and trees were grown under three irrigation regimes. All cultivars were trunk-shaken using an experimental inertial shaker on an over-the-row (OTR) shake–catch harvester. `Autumnglo' also was hand-harvested at all irrigation regimes. Fruit damage was not significantly affected by irrigation. A significant source of fruit damage was pruning debris that remained in the canopy after hedging and became lodged in the fruit-conveying system, resulting in cultivar effects on fruit damage. Total yield of firm-ripe fruit was similar among cultivars in 1987 and 1988. However, `Autumnglo' trees had a higher percentage of marketable fruit than `Redhaven' or `Harvester' in 1987 and 1991. Mechanical harvesting appeared to accelerate the decline of `Autumnglo' as shown by tree deaths and greater symptom expression of Prunus necrotic ringspot virus. The potential for a single mechanical harvest of peaches is limited because of the difficulty in managing the ripening window, the high potential for fruit damage, and the possibility of accelerated tree decline for disease-susceptible cultivars.

Free access

Isaac Zipori, Arnon Dag, Yizhar Tugendhaft, and Reuven Birger

last few decades have been designed and shaped for mechanical harvesting by trunk shakers, overhead straddle-type harvesters, or canopy-contact shakers ( Ferguson et al., 2010 ). The application of mechanical harvesting to table olives is more complex

Free access

Kuo-Tan Li, Jim Syvertsen, and Jacqueline Burns

The shedding of leaves, branches, flowers, and young fruit; scuffing of bark; and exposed roots that are caused by trunk or canopy shakers during harvest appears to be unavoidable, but generally does not reduce long-term yields. Nonetheless, such visible injuries have limited the widespread adoption of mechanical harvesting in Florida's citrus industry. We determined if such physical injuries caused by a properly operated trunk shaker resulted in any physiological injures or any consequent decline in vigor and productivity of well-managed, healthy citrus trees. We continuously monitored various physiological indexes in mature `Hamlin' and `Valencia' orange trees annually harvested by hand or by a linear-type trunk shaker with various shaking durations. Trunk shaking did not reduce return bloom, fruit set, young fruit growth, or canopy and root growth. There was a correlation between the seasonal timing of a simulated bark injury and recovery from the injury. Although some root exposure was frequently observed during trunk shaking, leaf water relations and fine root growth were unaffected. There was no difference in leaf dry weight per area and leaf nitrogen among treatments. Mechanical and hand harvesting in late season `Valencia' during full bloom removed similar amounts of flowers. However, immature fruit were removed by trunk shaking when `Valencia' were harvested after mid-May, and the number of young fruit removal increased with shaking duration and fruit size. The loss of young fruit for the next crop remains a major problem of mechanical harvesting in late harvest `Valencia'.