Search Results

You are looking at 1 - 4 of 4 items for :

  • "tissue blots" x
  • All content x
Clear All
Free access

L. Mark Lagrimini, Jill Vaughn, John Finer, Karen Klotz, and Patrick Rubaihayo

Tomato plants (Lycopersicon esculentum cv. OH 7814) were transformed via Agrobacterium tumefaciens with a chimeric tobacco anionic peroxidase (EC 1.11.1.7) gene joined to the cauliflower mosaic virus (CaMV) 35S promoter. Transgenic plants obtained by selection on kanamycin were found to have more than five times the total leaf peroxidase activity of control plants. Transformed tomato plants chronically wilted upon reaching sexual maturity. Two independently selected transformants were self-fertilized, and progeny were obtained that were homozygous for the foreign gene. Isoelectric focusing gels stained for peroxidase activity revealed a new tomato leaf peroxidase isoenzyme with a pI of 3.75, which is similar to that seen in Nicotiana sylvestris L. Mature tomato fruit were found to have up to 1600-fold higher peroxidase activity in transformants expressing the tobacco anionic peroxidase (TobAnPOD) than control plants. Tissue blots showed the tobacco enzyme evenly distributed throughout the tomato fruit tissue. Progeny plants possessing the tobacco peroxidase gene (now homozygous) showed stunting, and fruit size was reduced by >80%. However, fruit set was normal and the rate of ripening was not altered from control plants. Fruit from transformed plants were found to have normal pigmentation, but the soluble solids concentration was 400% higher than in control tomato fruit. This result was predicted from the peroxidase-induced water stress. Possible roles for the tobacco anionic peroxidase in growth, development, and stress resistance are discussed.

Free access

Kullanart Obsuwan, Wayne B. Borth, John Hu, and Adelheid R. Kuehnle

A Cymbidium mosaic virus movement protein gene with a site-specific mutation (mut11) under control of a ubiquitin promoter was inserted using biolistics into two Dendrobium varieties with the intention of creating CymMV-resistant orchids. Presence of the transgene in regenerated plants of D. × Jaquelyn Thomas `Uniwai Mist' and D. x Jaq–Hawaii `Uniwai Pearl' was confirmed by PCR using genomic DNA, and mut11-positive plants were potted ex vitro. Forty-two transgenic plants and four non-transgenic control plants at the 4- to 6-leaf stage were inoculated with a 1:1000 dilution of CymMV obtained from infected orchids. Plants were analyzed for systemic infection using tissue blot immunoassay (TBIA). Seventeen plants from at least six independent transformations remained virus-free, whereas all control plants were infected with CymMV within 1 month. Further analysis by RT-PCR showed that the mut-11 mRNA was detectable in only two of these 17 plants. All plants were challenged again with a second CymMV inoculation as above, followed by TBIA analysis after 1 month. Thirteen of 17 plants remained free from virus. A third challenge of these plants with CymMV as above was followed by TBIA analysis at 1 week, 2 weeks, 1 month, 3 months, 6 months, and 12 months after challenge. Results at 2 weeks post-inoculation showed that all six controls and four individual transgenic plants, including the RT-PCR-positive plants, became systemically infected. Nine transgenic plants from both varieties remained free from CymMV 12 months after the third challenge. Lack of detectable mut11 mRNA in these resistant lines suggests that a post-transcriptional gene silencing (PTGS) mechanism may be conferring resistance to CymMV.

Free access

Jian Xin Shi, Joseph Riov, Raphael Goren, Eliezer E. Goldschmidt, and Ron Porat

from flavedo and juice vesicle tissues. Blots were hybridized with specific probes. The ethidium bromide-stained ribosomal RNA (rRNA) bands are shown to indicate the equivalent RNA loading. Respiration rates of both cultivars declined during the

Free access

Chandrasekar S. Kousik, Scott Adkins, William W. Turechek, Craig G. Webster, and Pamela D. Roberts

crowns of inoculated plants by tissue blot nucleic acid hybridization. However, 392291-VDR plants infected with SqVYV do not decline and die like plants of ‘Mickey Lee’, ‘Crimson Sweet’, and other seedless commercial watermelon cultivars. In addition