Search Results

You are looking at 1 - 10 of 119 items for :

  • "temperature responses" x
  • Refine by Access: All x
Clear All
Free access

Douglas D. Archbold

Plants of a diverse collection of Fragaria clones from a range of native habitats representing F. chiloensis, F. virginiana, F. virginiana glauca, and F. vesca, were grown in a controlled environment at one of three day/night temperatures, 15/15, 23/15, or 31/15°C. Relative growth rate (RGR) and net assimilation rate (NAR) were estimated from plant leaf areas and total dry weights. At 23/15°C, the species mean RGR and NAR values were comparable although clones within species exhibited significant variation. At 15/15 and 31/15°C, RGR and NAR for species were lower than at 23/15°C. At 31/15°C, chiloensis and vesca mean values were reduced more than the others, to less than 50% the 23/15°C values. Also, NAR declined most for chiloensis, to 45% the 23/15°C value. At 15/15°C, virginiana had much higher RGR and NAR values than the other species, and its NAR mean value was greater than at 23/15°C. Although the species means would suggest that there are interspecific differences in temperature response, intraspecific variability was also large. Thus, classifying Fragaria species by temperature response may be an over-generalization.

Free access

Schuyler D. Seeley

The effect of thermal accumulation on anthesis rate in apricot, apple, peach, and tart cherry flowers during dormancy, dormancy release, and normal anthesis was determined. Data from several studies in warm and cold climates have indicated that thermally driven anthesis has an early low-temperature optimum that rises during anthesis. This is not true. Erroneous interpretation of results may have been due to inadequate measurements of the endodormancy status of seeds and buds. After endodormancy, flower-bud development temperature responses follow a normal sigmoidal curve with small but significant contributions at temperatures as low as 2C. The grand phase of the growth curve occurs between 16 and 20C in tart cherry. Asymptotic growth vs. temperature responses occurred at <10 and >22C, with minima near 0 and optima >24C. These data indicate that asymmetric curvilinear anthesis models need to be fitted to each species.

Free access

R.A. Teutonico, T.C. Osborn, and J.P. Palta

Identification of the genes involved in low temperature responses in oilseed Brassica could lead to genetic improvement of this crop and other species. We developed a genetic linkage map for B. rapa using restriction fragment length polymorphisms (RFLPs) and identified molecular markers which are linked to genes controlling vernalization requirement and freezing tolerance. We mapped the location of a group of cold-regulated (`cor') genes from Arabidopsis thaliana in this population and determined their association with these cold responses. We developed genetically fixed, recombinant inbred lines of B. rapa to assay the physiological processes involved in these cold responses. Specifically, we measured the differences in lipid composition of the plasma membranes of acclimated and nonacclimated plants of a subset of this population. We will determine if the genes involved in the physiological responses to low temperature are also associated with the acquisition of freezing tolerance.

Free access

Marc W. van Iersel and Orville M. Lindstrom

Temperature-response curves for photosynthesis and respiration are useful in predicting the ability of plants to perform under different environmental conditions. Whole crop CO2 exchange rates of three magnolia (Magnolia grandiflora L.) cultivars (`MGTIG', `Little Gem', and `Claudia Wannamaker') were measured over a 25 °C temperature range. Plants were exposed to cool temperatures (13 °C day, 3 °C night) temperatures before the measurements. Net photosynthesis (Pnet) of all three cultivars increased from 3 to 15 °C and decreased again at higher temperatures. `MGTIG' had the highest and `Little Gem' the lowest Pnet, irrespective of temperature. The Q10 (relative increase in the rate of a process with a 10 °C increase in temperature) for Pnet of all three cultivars decreased over the entire temperature range. `MGTIG' had the lowest Q10 at low temperatures (1.4 at 8 °C), while `Little Gem' had the lowest Q10 for Pnet at temperatures >17 °C and a negative Q10 > 23 °C. This indicates a rapid decline in Pnet of `Little Gem' at high temperatures. The decrease in Pnet of all three cultivars at temperatures >15 °C was caused mainly by an exponential increase in dark respiration (Rdark) with increasing temperature. `Little Gem' had a lower Rdark (per unit fresh mass) than `MGTIG' or `Claudia Wannamaker', but all three cultivars had a similar Q10 (2.46). Gross photosynthesis (Pgross) was less sensitive to temperature than Pnet and Rdark. The optimal temperature for Pgross of `MGTIG' was lower (19 °C) than those of `Little Gem' (21 °C) and `Claudia Wannamaker' (22 °C). The Q10 for Pgross decreased with increasing temperature, and was lower for `MGTIG' than for `Little Gem' and `Claudia Wannamaker'. All three cultivars had the same optimal temperature (11 °C) for net assimilation rate (NAR), and NAR was not very sensitive to temperature changes from 3 to 17 °C. This indicates that the plants were well-adapted to their environmental conditions. The results suggest that respiration rate may limit magnolia growth when temperatures get high in winter time.

Free access

David W. Davis and Karl J. Sauter

Attention has been given in recent literature to crop breeding for heat tolerance, but, as with certain other physiological traits, such as photosynthetic efficiency, practical gain has lagged. The question remains as to whether heat tolerance can be improved, and, if so, if it can most efficiently be improved by a holistic approach, as in breeding for yield following timely high temperature levels in the field environment, or whether the breeding for heat (and drought) tolerance components in the laboratory would be feasible. At issue is the identification and repeatability of key plant responses, such as cell membrane damage, heat shock protein formation, increased ethylene output and other responses, and the relevance, effectiveness and cost of screening for such traits. Results from our laboratory, and the work of others, will be reviewed.

Free access

Paul H. Li

The common bean (Phaseolus vulgaris L.) is a heat-sensitive plant species in which excessive abscission of reproductive organs occurs during hot weather. This results in yield reductions, and, in extreme heat stress, plants produce few or no pods. We evaluated 74 bean genotypes in terms of leaf heat tolerance (HT) and leaf heat acclimation potential (HAP), as expressed by heat killing time (HKT), the time in minutes needed to cause a 50% electrolyte leakage from leaf tissue heated at 50°C Leaf HT is defined as the leaf HKT of plants without prior conditioning at 37°C day/night temperature and leaf HAP as the change in leaf HT following exposure of the plant to 37°C day/night for 24-h. Among 74 bean genotypes examined leaf HT ranged from 5 to 30 min HKT, whereas leaf HAP ranged from 35 to 130 min HKT. Positive significant correlations were observed between leaf HAP and post-stress performance in photosynthetic activities, plant dry weight, pod set, pod weight and yield among bean genotypes. Correlations, however, were not significant between leaf HT and post-stress performance.

A relationship between heat resistance, consisting of the combination of HT and HAP, and heat injury is proposed. Interpretation of the differential amounts of heat injury among genotypes having different HAP, is discussed. We view leaf HT and leaf HAP as two distinguishable phenomena. We suggest that in breeding programs HAP may be the more important of the two, and should he evaluated as a selection criterion for improving crop performance in high temperature environments.

Free access

David W. Davis and Karl J. Sauter

Attention has been given in recent literature to crop breeding for heat tolerance, but, as with certain other physiological traits, such as photosynthetic efficiency, practical gain has lagged. The question remains as to whether heat tolerance can be improved, and, if so, if it can most efficiently be improved by a holistic approach, as in breeding for yield following timely high temperature levels in the field environment, or whether the breeding for heat (and drought) tolerance components in the laboratory would be feasible. At issue is the identification and repeatability of key plant responses, such as cell membrane damage, heat shock protein formation, increased ethylene output and other responses, and the relevance, effectiveness and cost of screening for such traits. Results from our laboratory, and the work of others, will be reviewed.

Free access

Michael Bartholomew and Mary M. Peet

Previous greenhouse studies in Raleigh have shown that nighttime cooling increases tomato fruit weights from 11% to 53%, depending on planting dates. The physiological mechanism was unclear, except that temperatures during fruitset were most critical We report here on a phytotron experiment comparing pollen characteristics and in vitro pollen germination of plants grown at night temperatures of 18, 22,24 or 26°C in a 12-hour photoperiod with 26°C day temperature in all treatments. There was considerable variability between sampling dates in pollen characteristics and % germination. The most consistent and significant effects were a decrease in total pollen and an increase in % abnormal pollen at high night temperatures. Number of seed present in the fruit also decreased with increasing night temperatures, indicating that the changes in pollen characteristics adversely affected seedset. Night temperatures of 22C appeared optimal for many of the pollen and growth characteristics measured, but fruit developed most rapidly at the higher night temperatures.

Free access

Rita A. Teutonico, Jiwan P. Palta, and Tom C. Osborn

Identification of the genes involved in freezing tolerance in oilseed Erussica could lead to genetic improvement of winter survival of this crop and other species, as well as provide greater understanding of the basis of cold stress tolerance in plants. We developed a genetic linkage map for B. rapa using restriction fragment length polymorphisms (RFLPs) and identified molecular markers which are linked to genes controlling vernalization requirement and freezing tolerance. We mapped the location of a group of cold-regulated (`cor') genes from Arabidopsis thaliana in this population and determined their association with freezing tolerance and vernalization requirement. We developed genetically fixed, recombinant inbred lines of B. rapa to assay the physiological processes involved in these cold responses. Specifically, we measured the differences in lipid composition of the plasma membranes of acclimated and nonacclimated plants of a subset of this population. We will determine if the genes involved in the physiological responses to cold temperature are also associated with the acquisition of freezing tolerance.

Free access

J. Steininger, C.C. Pasian, and J.H. Lieth

`Candy Sunblaze' and `Red Sunblaze' miniature roses (Rosa L. sp.), were grown at several temperatures. The phenological events of budbreak (BB), visible flower bud (VB), and open flower (OF) were recorded daily. Based on these events, phenophases from BB to VB (BB:VB), from VB to OF (VB:OF), and from BB to OF (VB:OF) were defined. Daily rates of development to complete a phenophase increased with temperature between 13.6 and 27 °C. For `Candy Sunblaze', the rate of increase changed to a smaller slope beyond 25 °C. A piecewise linear regression change point model was fitted to each dataset. The base temperature (Tb) and the temperature at which the nonlinearity (Ti) occurred could then be determined. Tb for the phenophase BB:OF was 9.5 °C for `Candy Sunblaze' and 8.1 °C for `Red Sunblaze'. Ti for `Candy Sunblaze' was 24.9 °C for BB:VB and 25.6 °C for the phenophase BB:OF. The resulting point of change in rate of development prompted a modification of the traditional thermal unit formula. To complete the phenophase BB:OF using the modified formula, 479 degree days (°Cd) were predicted necessary for `Candy Sunblaze' and 589 °Cd for `Red Sunblaze'. Predicted time of events was compared with observed values. Subdividing BB:OF into BB:VB and VB:OF and using their respective Tb and thermal units summations (TU) reduced the average prediction error from 1.9 to 1.8 days for `Candy Sunblaze' and from 2.4 to 1.5 days for `Red Sunblaze'. In addition to single plant observations, phenological observations and thermal units were determined for pots with four plants to simulate commercial greenhouse crop production. Subdividing BB:OF into BB:VB and VB:OF and using their respective Tb and TU accumulations, reduced OF prediction errors on a crop basis for `Red Sunblaze', but was ineffective for `Candy Sunblaze'.