Search Results

You are looking at 1 - 10 of 19 items for :

Clear All
Full access

Shannon E. Beach, Terri W. Starman, Kristen L. Eixmann, H. Brent Pemberton and Kevin M. Heinz

Superbells Trailing Blue calibrachoa; Sun Chimes Coral diascia; Aromatica White and Vanilla Sachet nemesia; and Bridal Showers and Candy Floss Blue sutera or bacopa. All were planted in soilless media (Pro Mix BX; Premier Brands, Quakertown, PA) in 4.5-inch

Free access

W. Roland Leatherwood, John M. Dole, Ben A. Bergmann and James E. Faust

exposing cuttings to 1-MCP affects time to form adventitious roots in six taxa ( Angelonia angustifolia ‘Carita Lavender’, Calibrachoa × hybrida ‘Terra Cotta’, I . hawkeri ‘Sonic Red’, Portulaca oleracea ‘Fairytales Sleeping Beauty’, Sutera

Free access

Diane M. Camberato, James J. Camberato and Roberto G. Lopez

. Inefficient Fe uptake is one such characteristic documented in the genus of Calibrachoa , Diascia , Petunia , Sutera , and others, occurring at substrate pH above 6.2 ( Fisher and Argo, 2002 ). High alkalinity irrigation water (at 150 mg·L −1 CaCO 3

Full access

Terri W. Starman, Shannon E. Beach and Kristen L. Eixmann

Trailing Purple’, and ‘Superbells Trailing Blue’ calibrachoa; ‘Sun Chimes Coral’ diascia; ‘Aromatica White’ and ‘Vanilla Sachet’ nemesia; and ‘Bridal Showers’ and ‘Candy Floss Blue’ sutera or bacopa ( Sutera hybrida ). All were planted in soilless media

Free access

Christopher J. Currey, Veronica A. Hutchinson and Roberto G. Lopez

’, Nemesia fruticans ‘Aromatica Royal’, Osteospermum ecklonis ‘Voltage Yellow’, Scaevola hybrid ‘Blue Print’, Sutera cordata ‘Abunda Giant White’, and Verbena × hybrida ‘Aztec Violet’ were planted in 15-cm (1.7-L volume) round containers filled with

Free access

Shannon E. Beach* and Terri W. Starman

Vegetative annuals are increasing in popularity among greenhouse growers and consumers but little is known about their postharvest shelf life. Twenty-two cultivars from ten species of vegetative annuals were grown to marketability with optimum greenhouse culture. Plants were then subjected to one of three shipping durations (0, 1, or 2 days) in simulated shipping i.e., a growth chamber at 26.7 ± 0.3 °C, 0 μmol·m-2·s-1, and 50% relative humidity. The plants were then moved to simulated postharvest environment i.e., growth room at 21.1 ± 1.3 °C and 6 μmol·m-2·s-1 to evaluate shelf life. Flower number and plant quality rating were measured weekly in addition to observations of plant appearances. Some of the postharvest disorders noted on several species and cultivars were stem die back, leaf chlorosis, stem elongation, bud abortion, flower drop, and flower fading. The majority of the cultivars maintained their quality one-week postharvest although flower drop was common. After the first week of shelf life, decline in vegetative and reproductive tissues were noted in most plants. Cultivars from nine species: Argyranthemum frutescens (L.) Sch. Bip, Bracteantha bracteata (Vent.) Anderb. & Haegi, Calibrachoa hybrid Lave Lex, Diascia ×hybrida, Lantana camara L., Nemesia ×hybrida, Petunia ×hybrida, Sutera hybrida, and Sutera cordata showed decreased flower number and/or quality rating due to shipping duration, with increased shipping duration causing accelerated postharvest disorders. The only species unaffected by shipping duration was Angelonia angustifolia Benth.

Full access

Millie S. Williams, Terri W. Starman and James E. Faust

The effect of increasing temperatures on the duration of postharvest flower development was determined for three specialty crop species: marguerite (Argyranthemum frutescens Webb ex Schultz-Bip.) `Butterfly' and `Sugar Baby'; swan river daisy (Brachycome hybrid Cass.) `Ultra'; and bacopa (Sutera cordata Roth.) `Snowflake'. Plants were grown in a greenhouse at 18 °C (65 °F) until flowering, and then transferred into a phytotron to determine heat tolerance. Plants were stored for 8 weeks at constant temperatures of 18, 23, 28, and 33 °C (65, 73, 82, and 91 °F) for 2-week intervals. Flower bud and flower number were recorded weekly. Sutera cordata `Snowflake' and B. hybrid `Ultra' had the greatest flower number at the 23 °C temperature, decreasing in the 28 °C environment. Argyranthemum frutescens `Butterfly' and `Sugar Baby' had greatest flower number at 28 °C, but flowers were of lower quality thanat 23 °C. Flower development of all cultivars ceased at 33 °C, at the end of 8 weeks at increasing temperatures, but when plants were returned to the 18 °C production greenhouse, flower development resumed. High temperatures (28 °C) reduce the postharvest performance of S. cordata, B. hybrid, and A. frutescens plants grown in hanging baskets; therefore, these species should be marketed as spring-flowering products since summer performance may be unsatisfactory in warm climates.

Free access

Millie S. Williams, Terri W. Starman and James E. Faust

The photoperiodic responses were determined for the following species: Abutilon hybrid `Apricot', Diascia hybrid `Ruby Fields', Evolvulus glomeratus `Blue Daze', Orthosiphon stamineus `Lavender', Portulaca oleraceae `Apricot', Scaevola aemula `Fancy Fan Falls', Sutera cordata `Mauve Mist' and `Snowflake', Tabernamontana coronaria `Double', and Tibouchina `Spanish Shaw'. Each plant species was grown at 8-, 10-, 12-, 14-, and 16-h photoperiods. Photoperiods were provided by delivering 8 h of sunlight, then pulling black cloth and providing daylength extension with incandescent bulbs. Air temperatures were monitored under each black cloth. Data collected included time to flower, number of flowers, and vegetative characteristics. Diascia, Sutera `Mauve Mist' and `Snowflake', Tabernamontana, and Tibouchina were day neutral with regard to flowering; i.e., no difference in days to visible bud or days to anthesis in response to photoperiod was observed. Portulaca and Scaevola increased in bud and flower number as photoperiod increased from 8 to 16 h, performing similar to quantitative long-day plants. There was no difference in time to flower for Portulaca; however, 70% more flowers were produced under the 16-h photoperiod, compared to the 8-h photoperiod. Scaevola had 26% more flowers under the 16-h than 8-h photoperiod. Abutilon, Evolvulus,and Orthosiphon performed as quantitative short-day plants. Days to visible bud and days to anthesis increased as photoperiod increased for Evolvulus and Orthosiphon, and Abutilon had decreased flower number as photoperiod increased. Although Abutilon had no difference in time to flower, there was a 43% increase in flowers on plants under the 8-h photoperiod vs. 16-h photoperiod. Evolvulus set visible bud and reached anthesis 10 days earlier under 8-h photoperiod than 16-h. Orthosiphon reached visible bud 32 days earlier under an 8-h photoperiod than a 16-h photoperiod.

Full access

Terri W. Starman, Melissa C. Robinson and Kristen L. Eixmann

Plant response to ethephon treatment was tested on 27 cultivars of vegetative annuals that have spreading and trailing growth habits. A control treatment was compared to 500 and 1000 mg·L-1 (ppm) foliar spray treatments of ethephon. Plant height and/or width index were significantly reduced for 81% of the cultivars tested. Responsive cultivars were alternanthera (Alternanthera dentata), brachyscome (Brachyscome iberidifolia) `Toucan Tango'; calibrachoa (Calibrachoa hybrids) `Colorburst Red', `Million Bells Cherry Pink', and `Trailing Pink'; diascia (Diascia × hybrida) `Sunchimes Rose' and `Red Ace'; double impatiens (Impatiens wallerana) `Tioga Red' and `Tioga White'; sweetpotato vine (Ipomoea batatas) `Sweet Caroline Bronze'; lantana (Lantana camara) `Patriot Cherry' and `Samantha'; nemesia (Nemesia × hybrida) `Aromatica Dark Lavender', `Blue Bird', and `Blueberry Sachet'; nolana (Nolana paradoxa) `Blue Eyes'; ivy geranium (Pelargonium hybrida) `King of Balcon'; petunia (Petunia × hybrida) `Cascadia Pink', `Mini Bright Pink', and `Supertunia Mini Purple'; bacopa (Sutera cordata) `Bridal Showers'; and vinca vine (Vinca minor) `Illumination'. Ethephon was not effective on monopsis (Monopsis unidentata) `Royal Flush', persicaria (Persicaria microcephala) `Red Dragon', or calibrachoa `Liricashower Rose'. Different cultivars of petunia showed varied responses to ethephon treatments as did trailing snapdragon (Antirrhinum majus) `Chandelier Yellow' and `Luminaire Yellow'. Flower number was reduced in 55% of the cultivars due to a delay in flowering. The experiment finds efficacy of ethephon for most cultivars treated at rates greater than or equal to that used commercially, however more research is needed to determine optimum concentrations for the specific cultivars. Chemical name used: ethephon [(2-chloroethyl) phosphonic acid].

Free access

Terri Woods Starman, Millie S. Williams and James E. Faust

The objective was to determine the optimum number of plants and the number of pinches required to market a basket for hanging basket production using alternative floriculture species. The number of plants per pot varied from one to four, and the number of manual pinches per basket ranged from 0 to 2. Several species were evaluated in spring of 1996 and heat tolerance was assessed throughout the summer. Plugs (50–95 plugs per flat) were transplanted into 25-cm hanging baskets in a 22/18°C (venting/night temperature set points) glasshouse. Three to four plants were necessary for Scaevola aemula `Fancy Fan Falls' and Evolvulus glomeratus `Blue Daze' to produce a marketable basket. One plant per pot was sufficient for Abutilon hybrid `Apricot', Portulaca oleraceae `Apricot', and Tibouchina `Spanish Shaw' without sacrificing quality; however, an additional 1 to 3 weeks production time was needed in comparison to the four plants per pot treatment. Abutilon and Portulaca required one pinch, while Tibouchina did not require pinching. All plants × pinch combinations produced quality baskets with Sutera cordata `Mauve Mist' and Diascia hybrid `Ruby Fields'; therefore, production methods should be based on growers' scheduling and cost analysis. Abutilon, Evolvulus, Portulaca, Scaevola, and Tibouchina performed well in hanging baskets throughout the summer. Two species in the trial, Orthosiphon stamineus `Lavender' and Tabernamontana coronaria, displayed upright growth habits and would be best for uses other than hanging basket production.