Search Results

You are looking at 1 - 10 of 11 items for :

  • "strontium" x
  • All content x
Clear All
Free access

Senay Ozgen, James S. Busse, and Jiwan P. Palta

measure effects at the individual plant level owing to the interplant competition in the culture vessels. Calcium and strontium are closely related elements and have been shown to have similar behavior in plants ( Mengel et al., 2001 ). Early studies by

Free access

Carl Rosen*, Peter Bierman, Adriana Telias, Yizhen Shen, and Emily Hooverf

A field experiment was conducted at the Horticultural Research Center in Chanhassen, Minn. to help refine recommendations for use of calcium (Ca) sprays to reduce the incidence of bitter pit in `Honeycrisp' apple. Specific objectives were to: evaluate the amount of translocation from leaves to fruit using strontium (Sr) as a tracer for potential Ca movement, determine whether there are differences in translocation in early vs. later phases of fruit development, and evaluate the effect of an experimental adjuvant on spray efficacy. Seven treatments tested included the following: 1) Control (no Sr applied), 2) Sr without adjuvant, fruit covered during spray application, full season, 3) Sr without adjuvant, fruit uncovered during spray application, full season, 4) Sr + adjuvant, fruit covered during spray application, full season, 5) Sr + adjuvant, fruit uncovered during spray application, 6) Sr + adjuvant, fruit covered during spray application, late season, 7) Sr + adjuvant, fruit uncovered during spray application, late season. Results from this study strongly suggest that Sr is a suitable tracer for foliar applied Ca. Up to 18% of the Sr applied to leaves was translocated to fruit. Eight full season spray applications more than doubled the concentration and content of fruit Sr compared to four late season sprays. The experimental adjuvant was found to double Sr absorption by and translocation to fruit compared to not using an adjuvant. Implications for foliar application of Ca to apple trees will be discussed.

Free access

Carl J. Rosen, Peter M. Bierman, Adriana Telias, and Emily E. Hoover

Application of calcium (Ca) sprays is a recommended practice to reduce the incidence of Ca-related disorders such as bitter pit in apple (Malus ×domestica), but effectiveness of sprays to increase Ca concentrations in the fruit is not always consistent. Strontium (Sr) has been used as a Ca analog to evaluate Ca transport processes and distribution in plants. A field study was conducted using foliar- and fruit-applied Sr as a tracer for Ca transport in 20-year-old `Honeycrisp' apple trees on Malling.26 (M.26) rootstock. The objectives of this study were to 1) measure the amount of Sr translocation from leaves to fruit, 2) determine the effectiveness of eight sprays applied over the growing season vs. four late-season sprays on increasing Sr concentrations in leaves and fruit, and 3) evaluate the effect of an experimental adjuvant consisting of alkyl-polysaccharides and monosaccharides on spray efficacy. Seven treatments were tested, which included a control and six Sr treatments applied in various combinations with or without an adjuvant. Trees were sprayed four or eight times during the growing season, either directly to leaves and fruit or to leaves only (fruit covered during application). Spray treatments did not significantly affect total fruit fresh or dry weight. Although some discrimination between Ca and Sr was detected, the similar distribution of Ca and Sr in fruit tissue of control treatments suggested that Sr is a suitable tracer for Ca. Based on the covered vs. uncovered fruit treatments, about 11% to 17% of the Sr in the fruit came from Sr applied directly to the leaves. Eight spray applications over the growing season more than doubled both the concentration and content of fruit Sr compared with four late season sprays. The tested adjuvant doubled Sr absorption by and translocation to fruit compared with not using an adjuvant. Assuming similar transport for Ca and Sr, and adjusting for the atomic weight of Ca relative to Sr, the maximum increase in fruit Ca concentration at harvest from foliar and fruit applications (eight sprays with adjuvant and uncovered fruit) would have been as follows: core = 78 mg·kg–1; flesh = 35 mg·kg–1; peel = 195 mg·kg–1; entire fruit = 67 mg·kg–1. In addition to being an underused tool for studying Ca transport patterns, the results also suggest that use of Sr may be a novel technique for testing the efficacy of various adjuvants used to enhance uptake and transport of Ca in leaves and fruit.

Free access

Richard J. McAvoy, Bernard B. Bible, and Michael R. Evans

The early onset of bract necrosis in poinsettia (Euphorbia pulcherrima Willd. ex. Klotzch) is characterized by small dark-stained spots that precede the development of enlarged necrotic lesions. Electron micrographs of adaxial epidermal and subepidermal tissues with early symptoms of necrosis revealed large, electron-dense deposits in cell vacuoles. These spherical bodies resembled condensed tannins observed in the epidermal tissues of peach and apple fruit. Chemical analysis of bract tissues confirmed the presence of condensed tannins. Furthermore, there were higher concentrations of condensed tannin in bract samples with 2-mm-diameter lesions than in samples with lesions <0.5 mm (equivalent to catechin concentrations of 59 and 13 mg·g-1 fresh mass, respectively). No tannin bodies were observed in parallel samples of healthy-appearing bracts in which only trace concentrations of condensed tannins were measured (0.2 mg·g-1 fresh mass). The evidence suggests an association between condensed tannin accumulation in localized areas of the bract and the early appearance of bract necrosis symptoms.

Free access

Bruce W. Wood

The factors regulating pecan [Carya illinoinensis (Wangenh.) K. Koch] pollen grain germination are poorly understood for both in vitro pollen viability tests and on receptive stigmatic surfaces of pistillate flowers. Potential regulating factors include flavonols, calcium (Ca), Ca-like alkali earth elements (AEEs), and rare earth elements (REEs). When various concentrations of certain naturally occurring simple flavonols (e.g., quercetin, kaempferol, myricetin, naringenin, and hesperetin) were tested in vitro by adding to standard pecan pollen germination medium, hesperetin, myricetin, and kaempferol functioned as a strong agonist at low concentration (0.12–2.0 µm for hesperetin and kaempferol, and 0.25 µm for myricetin), increasing pollen germination 2- to 3.9-fold over flavonol-free media. Hesperetin and myricetin were antagonistic at 16 µm. Kaempferol was not antagonistic at any concentration up to and including 16 µm. Naringenin was an antagonist at concentrations from 0.12 to 16 µm; whereas, quercetin was an antagonist at 8–16 µm, but tended to function as an agonist at low concentration (0.12–0.50 µm). The equal molar replacement of Ca2+ in standard pecan pollen germination media by single REEs, resulted in certain REEs [e.g., yttrium (Y), gadolinium (Gd), and thulium (Tm)] partially replacing the obligate need for Ca2+; thus, functioning as agonists in absence of Ca. All non-Ca AEEs [beryllium (Be), magnesium (Mg), strontium (Sr), expect for barium (Ba)], also partially substituted for Ca2+ at equivalent molar concentrations, but none were as efficacious as Ca2+. Results are suggestive that a) pollen germination in in vitro test can be improved by incorporation of certain flavonols, and b) pollen germination on stigmatic surfaces of flowers in orchards might be influenced or regulated by flavonol composition and Ca-like metals in the liquid matrix of the wet (receptive) stigmatic surface.

Free access

Lee Kalcsits, Gregory van der Heijden, Michelle Reid, and Katie Mullin

during fruit development. Rosen et al. (2006) used strontium as a tracer analog for Ca to measure the absorption potential of Ca testing early and late season applications in addition to the frequency of application. There are limits in the use of

Free access

W. Robert Trentham, Carl E. Sams, and William S. Conway

; Yuen, 1994 ). Injury could be a phytotoxic response to excess Ca in the fruit ( Conway and Sams, 1985 ). Postharvest firmness retention is greater for calcium than for strontium or magnesium treatments, and injury is increased by magnesium relative to

Full access

Timothy K. Broschat

. Sci. 101 34 37 Stinson, J.M. Brinen, G.H. McConnell, D.B. Black, R.J. 1990 Evaluation of landscape mulches Proc. Florida State Hort. Soc. 103 372 377 Suarez, D.L. 1996 Beryllium, magnesium, calcium, strontium, and barium 575 602 Sparks D.L. Methods of

Free access

Liping Kou, Tianbao Yang, Xianjin Liu, and Yaguang Luo

strontium on decay, firmness, respiration and ethylene production in apples J. Amer. Soc. Hort. Sci. 112 300 303 Conway, W. Sams, C. Hickey, K. 2002 Pre- and postharvest calcium treatment of apple fruit and its effect on quality Acta Hort. 594 413 419 Duque

Free access

Maude Lachapelle, Gaétan Bourgeois, and Jennifer R. DeEll

(Ctifl), Paris, France Conway, W.S. Sams, C.E. 1987 The effects of postharvest infiltration of calcium, magnesium, or strontium on decay, firmness, respiration, and ethylene production in apples J. Amer. Soc. Hort. Sci. 112 300 303 Corelli Grappadelli, L