Search Results

You are looking at 1 - 10 of 41 items for :

  • "stigma receptivity" x
Clear All
Free access

Sandra M. Reed

The objectives of this study were to evaluate self-fertility and to determine the effectiveness of pollinations made over a 4-day period in Japanese snowbell, S. japonicum Sieb. & Zucc. Pollen germination and pollen tube growth were observed in stained styles following cross- and self-pollinations made from 1 day before to 2 days after anthesis. One month after pollination, fruit set averaged 40% in cross-pollinations and 14% in self-pollinations. Two months later, about one-third of the fruit resulting from cross-pollinations had aborted and only one fruit remained from the self-pollinations. This study demonstrated that stigmas of S. japonicum are receptive for at least 4 days and that flowers should be emasculated prior to making controlled cross-pollinations.

Free access

Sandra M. Reed

The objectives of this study were to evaluate self-incompatibility in Hydrangea paniculata Sieb. and H. quercifolia Bartr. and to determine optimum time for pollination of these two species. Flowers from three genotypes of each species were collected 1, 2, 4, 8, 24, 48, and 72 hours after cross- and self-pollination, stained with aniline blue and observed using a fluorescence microscope. In both species, pollen germination was observed on stigmas of over half of the flowers collected 4 to 72 hours after cross- or self-pollination. Differences in pollen tube length between cross- and self-pollinated flowers were noted from 8 to 72 hours after pollination in H. paniculata and from 24 to 72 hours after pollination in H. quercifolia. By 72 hours after pollination, most self-pollen tubes had only penetrated the top third of the style but cross-pollen tubes had grown to the base of the style and entered 40% to 60% of the ovules. Stigmas of H. paniculata were receptive to pollen from anthesis to 5 days after anthesis, while stigmas of H. quercifolia were receptive from 1 to 5 days after anthesis. This study provides evidence of a gametophytic self-incompatibility system in H. paniculata and H. quercifolia. Occasional self-seed set previously observed in these species was theorized to have been due to pseudo-self compatibility.

Free access

Sandra M. Reed

Breeding efforts in Clethra alnifolia L., an ornamental shrub native to the Eastern U.S., are hindered by a lack of information on the reproductive behavior of this species. The objective of this study was to evaluate self-compatibility, time of stigma receptivity, and the relationship between time of pollen shed and stigma receptivity in C. alnifolia. Stigma receptivity and changes in floral morphology were monitored over a 7-day period beginning at flower opening. Pollen germination and pollen tube growth in styles were examined following self- and cross-pollinations using fluorescence microscopy. Seed set and germination were compared following self- and cross-pollinations. Anthers began to dehisce in `Hummingbird' and `Ruby Spice' the day after flowers opened, but stigmas did not become fully receptive to pollen until 2 days later. An increase in the length of pistils was observed following flower opening. Maximum elongation of pistils occurred at approximately the same time stigmas became receptive and could be utilized as an indicator of receptivity. While self-pollen tubes appeared to grow slightly slower than cross-pollen tubes, there was no indication of a self-incompatibility system acting at the stigmatic or stylar level in C. alnifolia. Self-pollinations of `Hummingbird' and `Ruby Spice' produced fewer seeds than did cross-pollinations of these cultivars. Germination of all seed obtained from this study was too poor to allow a comparison of germination rates of the self- and cross-pollinated seed. However, because a few self-progeny were obtained, emasculation is recommended when making controlled pollinations. The presence of a late acting self-incompatibility system or early-acting inbreeding depression was proposed as being responsible for the lower seed set following self-pollination.

Free access

Sandra M. Reed

Little information is available on the reproductive behavior of Hydrangea macrophylla (Thunb. Ex J.A. Murr.) Ser. The objectives of this study were to investigate time of stigma receptivity, viability of pollen from sterile flowers, and self-incompatibility in this popular ornamental shrub. Pollen germination and pollen tube growth in styles were examined using fluorescence microscopy. Stigma receptivity was examined in cross-pollinations made from 1 day before anthesis to 8 days after anthesis. Maximum stigma receptivity for the two cultivars examined occurred from anthesis to 4 days after anthesis. Viability of pollen from sterile flowers was evaluated through pollen staining and observations of pollen tube growth. No significant difference in percent stainable pollen between fertile and sterile flowers was observed in any of the six taxa examined. Pollen germination and pollen tube growth were studied in cross-pollinations made using pollen from fertile and sterile flowers of two cultivars. For both cultivars, pollen tubes from fertile and sterile flowers grew to the same length and had entered ovules by 72 hours after pollination. Self-incompatibility was evaluated by comparing pollen germination and pollen tube growth in cross- and self-pollinations. In the five taxa examined, self pollen tubes were significantly shorter than cross pollen tubes in flowers that were examined 72 hours after pollination. This finding indicates the presence of a gametophytic self-incompatibility system in H. macrophylla.

Free access

E. Ortega, J. Egea and F. Dicenta

In almond [Prunus dulcis (Mill.) D.A. Webb], a high flower density and fruit set rate is important, because yield increases with higher fruit set ratio. Furthermore, because the ovule of some cultivars mature at anthesis, rapid pollination and pollen tube growth along the style are essential to ensure fertilization of a viable ovule. In this work, we studied the effective pollination period (EPP) of four almond cultivars of different bloom time by studying pollen tube growth and fruit set. EPP in almond was longer than in other fruit trees, and its duration was determined by stigma receptivity, which decreased with high temperature. An acceptable fruit set for all cultivars was obtained following pollination from day 0 to day 4 after emasculation.

Free access

Esteban A. Herrera

Abbreviations: DASR, days after stigma receptivity IPMS, in plane to the middle septum; IPMSE, in plane to the middle septum extension; RAMS, at right angles to the middle septum. New Mexico Agricultural Experiment Station Journal Article 1236. The

Full access

Viviane de Oliveira Souza, Margarete Magalhães Souza, Alex-Alan Furtado de Almeida, Joedson Pinto Barroso, Alexandre Pio Viana and Cláusio Antônio Ferreira de Melo

controlled pollination, detailed investigations are performed such as the number of PGs per anther, PG viability, stigma receptivity, and pollen tube growth ( Cruden and Miller-Ward, 1981 ). Pre-breeding involves identifying characteristics and genes of

Free access

Susan S. Han, Abraham H. Halevy and Michael S. Reid

Unpollinated brodiaea (Triteleia laxa Benth.; syn. Brodiaea laxa) flowers produced no measurable C2 H4 during their entire lives. Treatment with C2 H4 (0.03 μl·liter -1) induced senescence of open flowers, completely inhibited opening of buds and petal growth, and promoted ovary growth. Silver thiosulfate had no effect on flowers kept in air but counteracted the effects of applied C, H.. The effect of C2 H4 on ovary growth seems to be indirect, via promotion of petal senescence and mobilization of the petal's metabolites to the ovary. Brodiaea flowers are protandrous; the stigma appears to be receptive (as judged by a pollination-induced burst of ethylene synthesis) only when the petals start to senesce. At this stage, papillae on the stigma surface elongated and separated.

Free access

Alisha L. Ruple, John R. Clark and M. Elena Garcia

), Fayetteville, AR (lat. 36°5″47′ N, long. 94°10″29′ W). Four elements of fertility [pollen viability, pollen germination, stigma receptivity, and pollen tube growth (increase in length down style)] were evaluated on six PF genotypes: ‘Prime-Jim’®, ‘Prime

Free access

Daiichiro Miyajima

The seed producing system in viola (Viola ×cornuta) was investigated to improve seed yield and to save labor. In a flower five anthers sequentially dehisced; pollen grains were continuously supplied to the anterior petal, which played a significant role in pollination, throughout the flowering period. Evidence from pollen and ovule number suggests that the species is facultative autogamy. Each flower opened more than 10 days was independent of the success in fertilization and kept seed producing ability during the flower longevity period. Pollen grains also maintained viability during the flower longevity period. Pollinators were indispensable for pollination of viola, but pollination in viola was done by a different mechanism from the typical insect-mediated pollination that sticky pollen grains adhere to the exposed stigmas. Pollen grains, accumulated around the entrance of the stigmatic cavity, entered into the cavity by the movement of pollinators. Although the visitation of pollinators was occasional, solitary bees primarily contributed to the pollination of viola. On the other hand, germination of pollen grains on the stigmatic surface was under 50%. Seed set was much lower than the germination percentage of pollen grains. A viola flower had the ability for additional pollinations and fertilization for some days after the fertilization success in some ovules in the flower. This characteristic suggested that repeated pollination is effective to increase the number of mature seeds in a capsule.