Search Results

You are looking at 1 - 10 of 443 items for :

  • "stage of development" x
  • Refine by Access: All x
Clear All
Free access

Ryan M. Warner

exposed to varying numbers of inductive photoperiod cycles before being transferred back to noninductive conditions ( Damann and Lyons, 1993 ). Reciprocal transfer experiments have been used to identify photoperiod-sensitive stages of development for

Free access

Woon Kye Ki and Michele R. Warmund

Inflorescences of `Earliglow' and `Honeoye' strawberry (Fragaria ×ananassa Duch.) plants were subjected to controlled freezing tests to determine the cold tolerance of styles, anthers, and receptacles of individual flowers at various stages of development. Flowers of both cultivars tended to deacclimate as the stages of development progressed. Styles and receptacles generally exhibited injury at higher temperatures than anthers. The greatest deacclimation of styles and receptacles of primary flowers occurred at earlier developmental stages of `Honeoye' than of `Earliglow'. However, at the sixth stage of development, the critical temperature for receptacle injury in primary and secondary fruit was -3C for both cultivars.

Free access

Juan C. Díaz-Perez

Fruit transpiration or weight loss was measured gravimetrically on eggplant fruits (cv. Classic) at various stages of development. The calyx of some fruits was covered with Vaseline to measure its relative contribution to total fruit transpiration. To evaluate the effect of storage conditions on fruit transpiration and quality, fruit of commercial size (24/37.4 liter box) were stored at either low evaporative demand (10C, 100% RH) or high evaporative demand (20C, 70% RH) for 7 days. After storage period, fruit transpiration and other fruit quality characteristics were determined. The results indicated that ≈70% of total fruit transpiration occurred through the calyx and stem in fruits size-24, where the calyx accounted for ≈10% of total fruit surface area. The surface area of the calyx relative to the total fruit area decreased as fruits developed. There was a positive correlation between evaporative demand in the storage room and fruit transpiration. At a higher evaporative demand, there was a reduction in fruit shelf life, fruits being more withered and less firm as compared to those stored at a lower evaporative demand. Thus, eggplant fruit quality would probably be extended by a reduction in fruit transpiration.

Free access

Gregory E. Welbaum

It is unclear from previous reports whether muskmelon seeds require an afterripenig period to attain maximum germinability and vigor. In the current study, seeds ranging in age from 30 to 60 days after anthesis were stored at water contents ranging from 3 to 15% and at either 6 or 30°C to determine whether seed vigor increased during storage. Changes in vigor were assessed by conducting monthly germination tests on blotter papers saturated with water or polyethylene glycol solutions of known water potential. The germination percentages of immature seeds (30 and 35 DAA) were dramatically improved by 3 months of storage at low water content and temperature, while the mean time to germination and the variability of germination were reduced for all stages of development. Germination percentages in water decline after storage at high water content and temperature with immature seeds showing a greater rate of decline than mature seeds but at reduced water potentials, the same adverse storage conditions increased the germination percents es and rates of mature seeds. However prolonged storage under adverse conditions, resulted in a gradual decline in water stress tolerance. Afterripening occurred over a wide range of storage conditions and significantly improved seed vigor, particularly in immature seeds. Furthermore, the increases in vigor achieved from afterripening treatments were remarkably similar to the increases in vigor attained through priming. Priming may substitute for the afterripening requirement of muskmelon seeds.

Free access

Holly L. Scoggins and Harry A. Mills

Crop-specific tailoring of fertilizer composition and timing of application reduces expense and runoff pollution. We examined the effects N forms and ratios have on growth, development, and utilization of nutrients in poinsettia (Euphorbia pulcherrima Willd. Ex Klotz.). Rooted cuttings of poinsettia `Freedom' were grown to flowering (10 weeks) in aerated solution culture under greenhouse conditions. Treatments consisted of five N ratios (percent ammonium: percent nitrate) of 100:0, 75:25, 50:50, 25:75, and 0:100 with a total N concentration of 150 mg·L–1. Dry mass for all plant parts and height increased as the ratio of NO 3 increased. Leaf and bract areas were greatest with ratios of 25:75 and 50:50, respectively. Plants receiving 100% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} exhibited severe ammonium toxicity symptoms and uptake of all macronutrients was suppressed. Average weekly uptake of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document}, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document}, P, and K was significantly affected by the treatments. Maximum uptake of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} and K occurred with 100% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document}, P with 25:75, and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} with 100% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document}. Uptake averaged across all treatments was divided into physiological growth stages (GS) to identify peak demand periods. The greatest uptake of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} was from the beginning of treatments to floral induction (GSI). Uptake of P, K, and Mg peaked at GSII, floral induction to visible bud. Visible bud to anthesis (GSIII) had the lowest uptake for all nutrients. These results demonstrate how \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} ratios and stage of development can influence growth and nutrient absorption.

Free access

Muharrem Ergun, Jiwon Jeong, Donald J. Huber, and Daniel J. Cantliffe

`Galia' (Cucumis melo var. reticulatus L. Naud. `Galia') melons exhibit relatively short postharvest longevity, limited in large part by the rapid softening of this high quality melon. The present study was performed to characterize the physiological responses of `Galia' fruit harvested at green (preripe) and yellow (advanced ripening) stages and treated with 1-methylcyclopropene (1-MCP) before storage at 20 °C. Treatment with 1.5 μL·L-1 1-MCP before storage delayed the climacteric peaks of respiration and ethylene production of green fruit by 11 and 6 d, respectively, and also significantly suppressed respiration and ethylene production maxima. Softening of both green and yellow fruit was significantly delayed by 1-MCP. During the first 5 d at 20 °C, the firmness of green control fruit declined 66% while 1-MCP-treated fruit declined 46%. By day 11, firmness of control and 1-MCP-treated green fruit had declined about 90% and 75%, respectively. The firmness of control yellow fruit stored at 20 °C declined 70% within 5 d while 1-MCP-treated fruit declined 30%. The 1-MCP-induced firmness retention was accompanied by significant suppression of electrolyte leakage of mesocarp tissue, providing evidence that membrane dysfunction might contribute to softening of `Galia' melons. The mesocarp of fruit harvested green and treated with 1-MCP eventually ripened to acceptable quality; however, under the treatment conditions (1.5 μL·L-1 1-MCP, 24 h) used in this study, irreversible suppression of surface color development was noted. The disparity in ripening recovery between mesocarp versus epidermal tissue was considerably less evident for fruit harvested and treated with 1-MCP at an advanced stage of development. The commercial use of 1-MCP with `Galia'-type melons should prove of immense benefit in long-term storage and/or export situations, and allow for retention of quality and handling tolerance for fruit harvested at more advanced stages of ripening.

Free access

David S. Koranski and Chad G. Ingels

Petunia seeds of `White Cascade', `Red Flash', and `Red Madness' were sown in 406 plug trays on the same date. The first transplanting occurred when the plants could be removed from the cells without root damage. Subsequent transplanting occurred for four weeks. The first transplanting of `White Cascade' flowered two weeks earlier than the second while the third transplanting was one week behind the second. `Red Flash' flowered two weeks earlier for the first transplanting. There was no effect on time to flower for the `Red Madness'. The highest fresh and dry weights corresponded to the earliest flowering transplants. Optimum growth and development for most petunia cultivars was obtained with the earliest transplanting without root damage.

Free access

Kay Oakley, Robert Geneve, Sharon Kester, and Myra Stafford

Root and shoot development in Marigold `Little Devil Flame' was studied after being grown for varying lengths of time in 392-count plugs before transplanting to six-pack cells. Seedlings were grown for 0, 5, 10, 15, 20, and 25 days before transplanting to six-packs. All plants were measured at day 25. There was no significant difference in total root length, area and dry weight per plant or in leaf area and shoot dry weight per plant for seedlings transplanted from 0 to 15 days. Both total root dry weight and total shoot dry weight of seedlings transplanted on day 20 was reduced by 32% compared to seedlings that were not transplanted. Total root dry weight of seedlings transplanted at day 25 was reduced by 60% while total shoot dry weight of seedlings was reduced by 56% from those not transplanted. In a separate experiment, the growth rate of seedlings grown in plugs was sigmoidal (r 2 = 0.98). Growth rate was significantly reduced between 20 and 25 days in the plug. These results suggest that root restriction in the plug may be a factor in the reduction of seedling growth following transplanting.

Free access

Carl E. Motsenbocker

Field and greenhouse studies examined the fruit detachment force (FDF) and fruit and pedicel characteristics of two lines of tabasco pepper (Capsicum frutescens L.) at several stages of maturity. The detachment force of red-mature `McIlhenny Select' fruit at the calyx-fruit detachment area was lower than that of less mature fruit stages. The force required to detach red-mature Hard Pick (HP) tabasco fruit was higher than that of redmature `McIlhenny Select' fruit in the field and greenhouse. The fruit detachment force of red field-grown HP fruit was higher, and in the greenhouse was lower, than that of green or breaker fruit. HP fruit of all maturity stages, except red-mature, separated similarly to `McIlhenny Select' fruit with little or no fruit tissue attached to the calyx. Fruit detachment force was not correlated with any fruit or pedicel characteristics studied.

Free access

David F. Graper and Will Healy

The increase in photosynthetic photon flux (PPF) and plant temperature associated with supplemental high pressure sodium (HPS) irradiation were investigated during Petunia × hybrids Villm. `Red Flash' seedling development. Seedlings were treated for 14 days following emergence or 5 days after the first true leaf had expanded to 1 mm. Treatments consisted of continuous infrared (IR) radiation (Ambient + IR), ambient conditions with spill-over radiation from adjacent treatments (Ambient - IR), root zone heating to 19.5C (RZ Heat), continuous HPS irradiation at 167 μmol·s-1.m-2 PPF (HPS + IR) or continuous HPS irradiation at 167 μmol-1·m-2 PPF filtered through a water bath to remove IR (HPS - IR). Linear regression of natural log-transformed fresh weights indicated that increasing ambient PPF 53% and elevating plant temperature 4.3C (HPS + IR) increased seedling relative growth rate (RGR) by 45% compared with the control (Ambient - IR). Elevating plant temperature with + IR by 4.8C without supplementing PPF (Ambient + IR) increased RGR by 31% but failed to increase fresh weight (FW) above controls and resulted in etiolated plants that were unsuitable for transplanting. Once plants were removed from supplemental treatment and returned to ambient conditions, RGR for all treatments was similar. The increased FW promoted by IR and HPS treatments was maintained for up to 7 days after treatment. Therefore, the increased seedling growth responses observed with HPS treatment were due primarily to an increase in RGR during HPS treatment that is not sustained beyond treatment.