Search Results

You are looking at 1 - 10 of 14 items for :

  • "spring fertilization" x
Clear All
Free access

Bertie Boyce and David Heleba

Winter injury in `Midway' strawberry plants was brought about by not mulching with grain straw in the fall. Minimum crown temperatures in these plants was -7.3C compared to a winter minimum crown temperature of -5.1C when plants were mulched. This 2.2C colder plant temperatures resulted in injury as evidenced by a significant reduction in yield (20%), smaller fruits, reduced vegetative growth and increased browning of the medulla tissues. No significant improvement in yield could be detected from the cold injured plants by the early application of 10-10-10 fertilizer at rates ranging from 0 to 2244 kg/ha. Vegetative growth was increased however.

Free access

Bernadine Strik, Timothy Righetti and Gil Buller

Fertilizer nitrogen (FN) recovery, and changes in nitrogen (N) and dry weight partitioning were studied over three fruiting seasons in June-bearing strawberry (Fragaria ×ananassa Duch. `Totem') grown in a matted row system. Fertilizer nitrogen treatments were initiated in 1999, the year after planting. The standard ammonium nitrate N application at renovation (55 kg·ha-1 of N) was compared to treatments where additional N was applied. Supplemental treatments included both ground-applied granular ammonium nitrate (28 kg·ha-1 of N) applied early in the season and foliar urea [5% (weight/volume); 16 kg·ha-1 of N] applied early in the season and after renovation. When labeled N was applied (eight of nine treatments) it was applied only once. The impact of no FN from the second through the third fruiting season was also evaluated. Fertilizer nitrogen treatment had no impact on total plant dry weight, total plant N, yield or fruit quality from the first through the third fruiting seasons. Net dry matter accumulation in the first fruiting season was 2 t·ha-1 not including the 4 t·ha-1 of dry matter removed when leaves were mowed during the renovation process. Seasonal plant dry weight and N accumulation decreased as the planting aged. Net nitrogen accumulation was estimated at 40 kg·ha-1 from spring growth to dormancy in the first fruiting season (including 30 kg·ha-1 in harvested fruit, but not including the 52 kg·ha-1 of N lost at renovation). Recovery of fertilizer N ranged from 42% to 63% for the broadcast granular applications and 15% to 52% for the foliar FN applications, depending on rate and timing. Fertilizer N from spring applications (granular or foliar) was predominantly partitioned to leaves and reproductive tissues. A large portion of the spring applied FN was lost when plants were mowed at renovation. Maximum fertilizer use efficiency was 42% for a granular 55 kg·ha-1 application at renovation, but declined to 42% just before plant growth the following spring, likely a result of FN loss in leaves that senesced. In June, ≈30% of the N in strawberry plants was derived from FN that was applied at renovation the previous season, depending on year. This stored FN was reallocated to reproductive tissues (22% to 35%) and leaves (43% to 53%), depending on year. Applying fertilizer after renovation increased the amount of remobilized N to new growth the following spring. The following June, 15% of plant nitrogen was derived from fertilizer applied at renovation 2 years prior.

Free access

F.J.A. Niederholzer, T.M. DeJong, J.-L. Saenz, T.T. Muraoka and S.A. Weinbaum

Marginally nitrogen (N)-deficient, field-grown peach trees [Prunus persica (L.) Batsch (Peach Group) 'O' Henry'] were used to evaluate seasonal patterns of tree N uptake, vegetative growth, and yield following fall or spring fertilization. Sequential tree excavations and determinations of tree biomass and N contents in Feb. and Aug. allowed estimation of N uptake by fall-fertilized trees between September 1993 and mid-February 1994. Total N uptake (by difference) by spring- fertilized trees as well as additional N uptake by fall-fertilized trees over the spring.summer period was also determined. In fall-fertilized trees, only 24% of tree N accumulation between September 1993 and August 1994 occurred during the fall/dormancy period. Spring- and fall-fertilized trees exhibited comparable vegetative growth, fruit size, and yield despite lower dormant tree N contents and tissue N concentrations in the spring-fertilized trees. Fifty percent of tree leaf N content was available for resorption from leaves for storage in woody tree parts. This amount (N at ~30.kghhhhhhha-1) was calculated to represent more than 80% of the N storage capacity in perennial tree parts of fertilized peach trees. Our data suggest that leaf N resorption, even without fall soil N application, can provide sufficient N from storage to initiate normal growth until plant-available soil N is accessed in spring.

Free access

Curt R. Rom, R.A. Allen, K. Kupperman and J. Naraguma

Three studies were established to compare spring (S) vs. autumn (F) N fertilizer applications on apple tree performance. The studies used newly planted trees, 4-yr-old trees, and 8-yr-old trees, fertilized with either ammonium nitrate or urea at 2 weeks after harvest (F) or at bud break (S). In the first 3 years growth in a newly planted orchard, time of fertilizer did not significantly affect tree height or TCSA. In the first cropping year, F fertilized trees had the greatest flower cluster number and bloom density but similar % set and yield compared to S fertilized trees. F fertilized trees in mature orchards studies tended to be shorter and have smaller TCSA increment after 3 yrs. Treatments did not affect bloom density, % set or total yield although spring fertilized trees had a greater % drop. Although spur leaves of F fertilized trees had greater N content at bloom, shoot leaves typically had lower N and Mn, and higher P, K, and Ca at 90 days after bloom compared to S treatment trees.

Full access

Milton D. Taylor, Sarah A. White, Stewart L. Chandler, Stephen J. Klaine and Ted Whitwell

Substantial quantities of water and nutrients are required for the production of high value nursery and greenhouse crops. As water quality criteria are strengthened locally and nationally, horticultural enterprises will have to meet stricter limits on nutrients in discharge water. This study examined the efficacy of an established vegetated surface-flow constructed wetland to mediate nitrogen (N) and phosphorus (P) in runoff water from a commercial nursery over a period of 38 months. Maximum oxidized nitrogen [nitrate-N (NO3-N) + nitrite-N (NO2-N)] inputs occurred during the spring fertilization period of March through May (11.1 to 29.9 mg·L–1 N) and minimum inputs occurred during winter plant dormancy between December and February (2.8 to 5.2 mg·L–1 N). Nitrogen remediation efficiency averaged 94.7% for March through November sampling dates but declined to a mean of 70.7% between December and February when mean wetland water temperature dropped below 15 °C. Orthophosphate phosphorus (PO4-P) concentrations in nursery runoff showed no dramatic changes over months, seasons, or years. Mean wetland influent orthophosphate concentration ranged from 0.7 to 2.2 mg·L–1 PO4-P with an overall mean of 1.41 mg·L–1 PO4-P for all months sampled. Mean discharge orthophosphate concentration ranged from 0.5 to 2.1 mg·L–1 PO4-P with a mean of 1.45 mg·L–1 PO4-P. Phosphorus remediation efficiency varied widely and there was no correlation with water temperature. This 9.31-acre surface-flow constructed wetland was highly efficient at removing N from nursery runoff from a 120-acre catchment (large container production area), although it failed to consistently lower orthophosphate levels in runoff. This type of constructed wetland is suitable for removing oxidized N forms from nursery runoff and, depending on size, is capable of handling the large volumes of runoff generated by medium to large nursery and greenhouse operations.

Full access

Marvin P. Pritts

spring of the fruiting year is generally not recommended in perennial strawberry because too much spring N can be detrimental to the plants and fruit, or simply not be economical to apply. Yield responses to spring fertilization were not observed in the

Free access

Peter H. Dernoeden, John E. Kaminski and Jinmin Fu

a height of 6.5 cm. The area received no spring fertilization and was irrigated only to prevent drought stress. To control crabgrass ( Digitaria spp.), the area received an application of siduron [1-(2-methylcyclohexyl)-3-phenylurea; 5.6 kg·ha −1 a

Full access

Chris Wilson, Joseph Albano, Miguel Mozdzen and Catherine Riiska

spring fertilization period, and 2.8 to 5.2 mg·L −1 during the plant dormancy period in the winter. Leaching and losses through surface runoff of NO 3 -N from containers and production areas increases production costs and reduces the return on finished

Full access

P. Chris Wilson and Joseph P. Albano

the spring fertilization period and from 2.8 to 5.2 mg·L −1 during the plant dormancy period in the winter. While phosphorus was not monitored during this study, similar but slower release results could be expected. Broschat (1995 , 2005) and

Free access

Xiaojie Zhao, Guihong Bi, Richard L. Harkess, Jac J. Varco and Eugene K. Blythe

increase NupE and reduce N runoff to the environment, 10 m m (140 ppm) N fertilizer may be considered most appropriate for spring fertilization in TB iris. Absorbed nitrogen use efficiency. In this study, N a UE was negatively related to N rate, which was