Search Results

You are looking at 1 - 10 of 11 items for :

  • "spray adjuvants" x
  • All content x
Clear All
Full access

Eugene K. Blythe, Jeff L. Sibley, Ken M. Tilt, and John M. Ruter

In five experiments, singlenode cuttings of `Red Cascade' miniature rose (Rosa) were treated with a basal quick-dip (prior to insertion into the rooting substrate) or sprayed to the drip point with a single foliar application (after insertion) of Dip `N Grow [indole-3-butyric acid (IBA) + 1-naphthaleneacetic acid (NAA)], the potassium salt of indole-3-butyric acid (K-IBA), or the potassium salt of 1-naphthaleneacetic acid (K-NAA); a single foliar spray application of Dip `N Grow with and without Kinetic surfactant; or multiple foliar spray applications of Dip `N Grow. Spray treatments were compared with their respective basal quick-dip controls {4920.4 μm [1000 mg·L-1 (ppm)] IBA + 2685.2 μm (500 mg·L-1) NAA, 4144.2 μm (1000 mg·L-1) K-IBA, or 4458.3 μm (1000 mg·L-1) K-NAA}. Cuttings sprayed with 0 to 246.0 μm (50 mg·L-1) IBA + 134.3 μm (25 mg·L-1) NAA, 0 to 207.2 μm (50 mg·L-1) K-IBA, or 0 to 222.9 μm (50 mg·L-1) K-NAA resulted in rooting percentages, total root length, percent rooted cuttings with shoots, and shoot length similar to or less than control cuttings. Exceptions were cuttings sprayed with 0 to 2.23 μm

(0.5 mg·L-1) K-NAA, which exhibited shoot length greater than the control cuttings. Addition of 1.0 mL·L-1 (1000 ppm) Kinetic organosilicone surfactant to spray treatments resulted in greater total root length and shoot length. Repeated sprays (daily up to seven consecutive days) had no or negative effects on root and shoot development.

Full access

Stephen S. Miller

2000, a study was conducted to examine the effect of several spray adjuvants in combination with PCa on the incidence of ‘Stayman’ cracking. Seven treatments were assigned at random to single 9-year-old trees on MM.111 rootstock in seven replicated

Full access

Martin J. Bukovac

The importance of spray application and the role of spray additives are reviewed in reference to increasing the effectiveness of plant growth regulators (PGR). The spray application process is composed of a number of interrelated components, from formulation of the active ingredient into a sprayable, bioactive solution (emulsion/suspension), to atomization, delivery, retention, and penetration into the plant tissue. Each of these events is critical to performance of the PGR. Also, each can be affected by spray additives, particularly adjuvants, which may be incorporated in the formulation of the active ingredient or added to the spray mixture. The role of the individual components and effects of spray adjuvants, particularly surfactants and fertilizer adjuvants, on the component processes are discussed.

Free access

L. Gene Albrigo and Jude W. Grosser

In Florida, pesticides, nutritional and growth regulators are often sprayed in tank mixes to reduce sprayer use. Many individual spray components are phytotoxic and result in spray burns in combination or if applied with adjuvants. The toxicity level of standard spray materials is not known and new product testing for phytotoxicity is not routine. Three tests were developed to allow testing of cellular and whole fruit susceptibility to spray chemicals. Cell suspension cultures initiated from `nucellar derived' embryonic callus of `Hamlin' sweet orange were grown in log phase for 2 weeks with various levels of test chemicals. Fresh weight increase was measured. Peel disks of orange or grapefruit were grown for 4 weeks on solid media. Color changes and callus growth were used to evaluate phytotoxicity. Dilute sprays and droplet applications to on-tree-fruit were used to evaluate individual and combinations of chemicals with and without spray adjuvants. The 3 tests combined effectively demonstrated levels of phytotoxicity and are useful for testing new citrus production chemicals.

Free access

Royal G. Fader, Patricia Luque, and Martin J. Bukovac

Foliar application of plant growth regulators (PGR) is an established horticultural practice. We are using a finite dose system to examine diffusion of 14C-labeled PGRs, primarily napththaleneacetic acid (NAA), from aqueous droplets and deposits through enzymatically isolated plant cuticles (CM) as affected by spray adjuvant chemistry, solution pH, and epicuticular wax. Recent studies have focused on a nonbuffered aqueous medium, which approximates field application conditions. Despite the negligible buffering capacity of the spray solution, there were significant differences in NAA diffusion with solution pH. At pH 3.2, NAA (pKa = 4.2) diffusion was two-fold greater than at pH 5.2. Additives (surfactants, urea, and urea:NH4NO3, 1:1 mixture) in the spray solutions increased the initial rate and absolute amount of NAA diffused. The polyethoxalated octylphenol surfactant (Triton-X) TX-45 (EO 5.5) enhanced rate and quantity of NAA diffusion. This enhancement was observed with CM, but not after removal of the epicuticular waxes, implicating an interaction between surfactant and waxes. Urea, over a four-fold concentration range, increased NAA diffusion 5% to 31% after 144 h. The urea:NH4NO3 mixture increased NAA diffusion to a greater extent at pH 5.2 (+136%) than at pH 3.2 (+8.4%) after 144 h.

Free access

Larry J. Kuhns and Tracey L. Harpster

Weeds must be controlled to produce marketable crop yields, for human safety, and for aesthetic reasons. Physical methods of weed control are highly labor and/or energy intensive, and in many cases are more dangerous to crops and people than herbicides. They are not practical solutions to most weed problems in developed countries. To properly work with and apply herbicides, researchers, and applicators should have a knowledge base that includes information on weed taxonomy, anatomy, and biology; herbicide chemistry and modes of action; spray adjuvants and carriers; soil characteristics and environmental factors that affect herbicide performance; application equipment technology; the development of herbicide resistance; alleleopathy; and the biological control of weeds. Herbicide use, in terms of product used or expenditures, is greater by a wide margin than that of insecticides and fungicides combined. Also, about two thirds of all pesticides produced in, and exported from, the United States are herbicides. Finally, about 40% of all of the herbicides used in the world are used in the United States. Only 32% of the insecticides and 14% of the fungicides are used in the United States. On the average, the leading universities in the country have only three faculty teaching courses in weed science, and they teach only two undergraduate and three graduate courses each year. Few are in horticulture. By comparison, there are 15 faculty teaching 13 undergraduate and 19 graduate courses in the leading entomology programs in the country. Weed control is an essential element in the production and management of all horticultural crops. Who is going to provide the education and training in weed science for the researchers, horticulturists, and consultants of the future?

Full access

growth of ‘Stayman’ trees, but generally reduced the effectiveness of GA 4+7 applied to suppress fruit cracking. PCa, with few exceptions, increased fruit cracking. Fruit cracking also increased when a spray adjuvant was included with the postbloom PCa

Full access

Laura Pickett Pottorff and Karen L. Panter

fungicides or AddQ spray adjuvant for control of cucurbit powdery mildew in detached leaf culture Plant Dis. 86 915 918 Smith, T.M. 2003 A review of western flower thrips and tospoviruses 17 Sept. 2008 < http

Free access

Eugene K. Blythe and Jeff L. Sibley

Committee on Food Additives, 1966 ). In agriculture, SCG has been used as a seed dressing for certain cereal crops ( Gasanov and Magomedov, 2004 ), as a component of controlled-release fertilizer ( Shavit et al., 1995 ), and as a spray adjuvant for plant

Full access

Helen E. Hammond, Richard K. Schoellhorn, Sandra B. Wilson, and Jeffrey G. Norcini

180 mg·L −1 , or as a drench at 6, 12, and 24 mg·L −1 . Ethephon was applied (3 qt/100 ft 2 ) using a CO 2 sprayer at 500 and 1000 mg·L −1 . A spray adjuvant CapSil (Aquatrols, Cherry Hill, NC) was added to ethephon solutions at 0.5 mL·L −1 . The