Search Results

You are looking at 1 - 10 of 68 items for :

  • Refine by Access: All x
Clear All
Free access

Yingmei Ma and Emily Merewitz

content in ( C ) Expt. 1 and ( D ) Expt. 2. Spermine content in ( E ) Expt. 1 and ( F ) Expt. 2. Treatment means were separated using Fisher’s least significant difference at P ≤ 0.05 (n = 4), which is represented by the vertical bar. Day 0 for Expts. 1

Free access

George F. Kramer, Chien Yi Wang, and William S. Conway

Abbreviations: CI, chilling injury; PG, endopolygalacturonase; PUT, putrescine; SPD, spermidine; SPN, spermine. We express our gratitude to Frank Liu and Dave for their assistance in obtaining the apples and to Hilarine Repace and George Brown for

Free access

Satoru Kondo, Anan Jitratham, Monrudee Kittikorn, and Sirichai Kanlayanarat

Effects of low temperature and chilling injury (CI) on jasmonic acid (JA) and methyl jasmonate (MeJA) concentrations were investigated in mangosteens (Garcinia mangostana L.). JA concentrations in the skin of fruit stored at 7 °C increased significantly compared with that of those stored at 13 °C, but JA decreased with the occurrence of visible symptoms of CI. Neither an increase in JA nor CI was detected in pulp of fruit stored at 7 °C. JA concentrations in the skin of fruit treated with spermine (Spm) and stored at 7 °C also increased, but at a lesser extent than in untreated fruit. Thus, the response of JA to low temperatures appears to be limited to chill-susceptible parts of the fruit. The decrease of JA and the onset of CI was delayed in fruit treated with Spm kept at 7 °C compared with untreated control fruit. Exogenous application of n-propyl dihydrojasmonate, which is a jasmonic acid derivative, effectively decreased CI. These results suggest that low temperature-induced JA accumulation may play a protective role against CI. The application of jasmonates may increase chill-resistance in fruit.

Free access

Hiroyasu Kitashiba*, Yu-Jin Hao, Chikako Honda, Masayuki Kita, and Takaya Moriguchi

Polyamines [putrescine (put), spermidine (spd), and spermine (spm)] are aliphatic amines that are implicated in the regulation of many basic physiological processes such as cell growth, proliferation and stress responses in organisms including plants (Walden et al. 1997). Put is metabolized to spd and spm through the successive enzymatic reactions of spd synthase (SPDS) and spm synthase (SPMS) with the use of decarboxylated S-adenosylmethionine (dcSAM) as an aminopropyl donor, which is generated by SAM decarboxylase (SAMDC). So far, two MdSAMDC (MdSAMDC1 and MdSAMDC2) homologous to SAMDC and two MdACL5 (MdACL5-1 and MdACL5-2) homologous to ACL5 encoding SPMS in Arabidopsis (Hanzawa et al. 2000) were isolated from `Orin' apple. To investigate the function of these genes, complementation analyses were carried out using yeast mutants. Each of the MdSAMDCs consists of three ORFs; tiny- and small-ORFs in the 5' regions, and main ORF like other plant SAMDC genes. Both constructs for MdSAMDC containing all ORFs (SAM-DCall) or containing only main ORF (SAMDCorf) were capable of recovering the growth of yeast SAMDC-deficient mutants (delta spe2) without supplement of spd, although the SAMDCall constructs always showed the lower growth speed than the SAMDCorf constructs. On the other hand, yeast SPMS-deficient mutant (delta spe4) introduced by MdACL5 cDNA produced significantly higher amount of spm than the delta spe4 with control vector by HPLC. Collectively, these results suggest that both MdSAMDCs are functional as a SAMDC and the tiny- and small-ORFs are negative-regulatory factor for the translation efficiency of SAMDC, and also that MdACL5 encodes a functional SPMS like as ACL5 in Arabidopsis. The first and second authors contributed equally to this work.

Free access

Yiran Li, Asuka Uchida, Akiha Abe, Akihiro Yamamoto, Tomonari Hirano, and Hisato Kunitake

). The PAs, for example, putrescine (PUT), spermidine, and spermine (SPM), constitute a group of cell components that are precisely regulated. The biosynthesis and metabolism of PAs in plants have been well clarified. The oxidation of PAs can produce

Free access

Shiow Y. Wang and Miklos Faust

Polyamine, putrescine, spermidine, and spermine contents were determined during endodormancy in the buds of low-chilling-requiring `Anna' apples (Malus domestics Borkh.). Putrescine, spermidine, and spermine contents increased greatly in buds when their chilling requirement was satisfied. Polyamine biosynthetic inhibitors α -difluoromethylarginine (DFMA) or α -difluoromethylornithine (DFMO) reduced bud break and bud growth in concert with decreased polyamine titers. DFMO or DFMA did not inhibit bud break when it was applied to buds after they received the full chilling requirement. DFMO was more inhibitory than DFMA. The polyamine requirement was much higher for bud growth and bud development than during differentiation and bud break.

Free access

F.S. Cheng, S.K. Brown, and N.F. Weeden

A DNA extraction protocol was developed for tissues from woody species. DNA was extracted successfully from 11 species and five different types of tissues and was suitable for RAPD and restriction analysis. Spermine precipitation was used to further purify DNA. The protocol can be used for large-scale analysis and mini-preparations.

Free access

Wen-Quan Sun and Nina L. Bassuk

The effects of silver thiosulfate (STS) on stored and freshly made cuttings of `Royalty' rose (Rosa hybrids) were examined in relation to rooting and subsequent budbreak. STS pretreatment at 0.5 mm during storage stimulated budbreak but decreased the percentage of cuttings that rooted and the number of roots. IBA at 4.9 to 9.8 mm inhibited budbreak but this effect was partially reversed by STS. Spraying the cuttings with 1.0 mm STS once daily during the first 5 days of the rooting period also reduced rooting but prevented IBA-induced leaf senescence. Ethephon and spermine, each applied at 0.5 mm before rooting, had no effect on rooting or budbreak. Chemical names used: (2-chloroethyl)-phosphonic acid (ethephon); indole butyric acid (IBA); N,N'-bis(3-aminopropyl) -l,4-buanediamine (spermine).

Free access

Vijaya Shukla, Yingmei Ma, and Emily Merewitz

Plant cells contain long-chain amine compounds called polyamines, of which the most common are spermidine, spermine, and putrescine. These compounds are considered phytohormone-like because they play various regulatory roles in plant cells. They are

Free access

Jin-Cheol Jeong, Robert K. Prange, and Barbara J. Daniels-Lake

Potato (Solanum tuberosum L. `Russet Burbank' and `Shepody') tubers were exposed to continuous 4 μL·L-1 (166 μmol·m-3) ethylene in air. Treatment started after 8 weeks in storage and continued up to 33 weeks of storage at 9 °C over one (`Russet Burbank') or two (`Shepody') storage seasons. Tubers were sampled at 3 week (`Shepody') or 5 week (`Russet Burbank') intervals for polyamine content [putrescine, (PUT); spermidine, (SPD); and spermine, (SPM)] and sprout number and fresh weight per tuber. During the storage period, `Shepody' had higher concentrations of all three polyamines and a higher PUT/(SPD + SPM) ratio, compared with `Russet Burbank'. All three polyamines in both cultivars increased during storage, and the increase was more rapid in `Shepody' than in `Russet Burbank'. Regardless of cultivar and year, exposure to ethylene induced higher spermidine (SPD) content and a lower PUT/(SPD + SPM) ratio, compared with the air treatment. Sprouts appeared later and were smaller on ethylene-treated tubers and were more numerous in `Russet Burbank'. These long-term ethylene effects may be due, in part, to enhanced transformation of PUT to SPD.