Search Results

You are looking at 1 - 10 of 45 items for :

  • "spectral filters" x
Clear All
Free access

Nihal C. Rajapakse and John W. Kelly

The role of light quality and quantity in regulating growth of vegetative Dendranthema × grandiflorum (Ramat.) Kitamura was evaluated using CuSO4 solutions and water (control) as spectral filters. Copper sulfate filters increased the red (R): far-red (FR) and the blue (B): R ratios (R = 600 to 700 nm; FR = 700 to 800 nm; B = 400 to 500 urn) of transmitted light. Photosynthetic photon flux (PPF) under 4%, 8% and 16% CuSO4 filters was reduced 26%, 36%, and 47%, respectively, from natural irradiance in the greenhouse, which averaged ≈ 950 μmol·m-2·s-1. Control treatments were shaded with Saran plastic film to ensure equal PPF as the corresponding C uSO4 chamber. Average daily maxima and minima were 26 ± 3C and 16 ± 2C. At the end of the 4-week experimental period, average height and internode length of plants grown under CuSO4 filters were ≈ 40% and 34% shorter than those of plants grown under control filter. Reduction in plant height and internode length was apparent within 1 week after the beginning of treatment. Total leaf area (LA) was reduced by 32% and leaf size (LS) was reduced by 24% under CuSO4 filters. Specific leaf weight (SLW) was higher under CuSO4 filters than for the controls. Irradiance transmitted through CuSO4 filters reduced fresh and dry leaf weights by 30%. Fresh and dry stem weights of plants grown under CuSO4 filters were 60% lower than those of controls. Relative dry matter accumulation into leaves was increased in plants grown under CuSO4 filters while it was reduced in stems. A single application of GA3 before irradiation partially overcame the height reduction under CuSO4 filters, suggesting GA biosynthesis/action may be affected by light quality. Our results imply that alteration of light quality could be used to control chrysanthemum growth as an alternative method to conventional control by chemical growth regulators. Chemical names used: gibberellic acid (GA)

Free access

Nihal C. Rajapakse and John W. Kelly

Transpiration rates of chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] plants grown under spectral filters were evaluated as part of an investigation on using light quality to regulate plant growth. The 6% CuSO4·5H2O spectral filter reduced photosynthetic photon flux density in red (R) and far red (FR) wavelengths and increased the R: FR and blue (B): R ratios (B = 400 to 500 nm; R = 600 to 700 nm; FR = 700 to 800 nm) of transmitted light relative to the water (control) filter. After 28 days, cumulative water use of plants grown under CuSO4 filters was ≈37% less than that of control plants. Transpiration rates were similar among plants grown under CuSO4 and control filters when expressed as leaf area, a result suggesting that the reduced cumulative water loss was a result of smaller plant size. Plants grown under CuSO4 filters had slightly lower (10%) stomatal density than control plants. Light transmitted through CuSO4 filters did not alter the size of individual stomata; however, total number of stomata and total stomatal pore area per plant was ≈50% less in plants grown under CuSO4 filters than in those grown under control filters due to less leaf area. The results suggest that altering light quality may help reduce water use and fertilizer demands while controlling growth during greenhouse production.

Free access

Venkat K. Reddy and Nihal C. Rajapakse

The response of `Bright Golden Anne' chrysanthemum plants grown under CuSO4 spectral filters to exogenous GA3 application was evaluated to determine the relationship between gibberellins (GAs) and carbohydrate levels. The CuSO4 filters removed far red (FR) wavelengths of light and increased red: far red (R:FR), blue: far red (B:FR), blue: red (B:R) ratios, and phytochrome photoequilibrium (Ø) values of transmitted light compared to water (control) filter. Plant height, internode length, and leaf and stem dry weights were significantly reduced by light passing through CuSO4 filters in spring and summer seasons. Weekly applications of exogenous GA3 reversed the reduction in height and internode length induced by CuSO4 filters. Plants grown under CuSO4 filters responded more to exogenous GA3 application with respect to height and internode length, suggesting that the sensitivity to GA was not lowered. Light passing through CuSO4 filters reduced the carbohydrate levels, but the response varied with the season. Weekly GA3 application increased the carbohydrate levels, but did not totally reverse the reduction in carbohydrate levels under the CuSO4 filters. Although GA3 application increased the carbohydrate levels partially in CuSO4 filter-grown plants, the inhibition of GAs may not be solely responsible for reduction of carbohydrate levels under CuSO4 filters, showing that exogenous GAs and carbohydrate levels are not well correlated under CuSO4 spectral filters.

Free access

M.J. McMahon, J.W. Kelly, D.R. Decoteau, R.E. Young and R.K. Pollock

`Spears' (nonpinched and pinched) and `Yellow Mandalay' (pinched) chrysanthemums were grown in growth chambers equipped with panels filled with liquids that served as spectral filters. Light quality was altered by reducing blue light, increasing red: far-red (R: FR) light, or reducing R: FR. Control panels did not selectively alter light transmission. Photosynthetic photon flux was the same in all chambers. All plants grown under increased R: FR filters had reduced height, reduced internode length, and increased chlorophyll content compared to controls. Reduction in blue light decreased chlorophyll content of pinched plants compared to controls. Pinched plants grown under increased R: FR light and !ong days developed fewer nodes than controls due to the formation of abnormal capitula; the controls and plants from the other treatments developed more nodes before producing similarly abnormal capitula. Stem diameter and leaf area did not differ due to treatments.

Free access

M.J. McMahon and J.W. Kelly

`Spears' (nonpinched and pinched) and `Yellow Mandalay' (pinched) chrysanthemums were grown in growth chambers equipped with clear, double-walled polycarbonate panels filled with liquids that served as spectral filters. A blue dye raised FR/R by filtering out a portion of red light. A solution of CuSO4 lowered FR/R by absorbing a greater portion of far-red than red light. A red dye absorbed much of the blue/green portion of the light spectrum but did not change far-red to red (FR/R) light ratio. Two controls (H2O and air) were used. FR/R values were 1.01 for blue dye, 0.34 for CuSO4, and 0.86 for air, H2O, and red dye. FR and R were measured at 725-730 and 655-660nm, respectively.

All plants grown under CuSO4 filters had reduced height, reduced internode length, and increased chlorophyll content compared to controls. Red dye filtered pinched plants had decreased chlorophyll compared to controls.

Pinched plants grown under CuSO4 filters and long days developed fewer nodes than controls due to the formation of abnormal capitula. The controls and other treatments developed more nodes before producing similar capitula. Stem diameter and leaf area of controls did not differ from blue dye, red dye, or CuSO4 filter treatments.

Free access

Sorua L. Maki, Melissa B. Riley and Nihal C. Rajapakse

Endogenous gibberellins of chrysanthemum [Dendranthema ×grandiflorum (Ramat)] cv. Bright Golden Anne were characterized in apices from plants grown under control and CuSO4 spectral filters. Expanding shoots were separated into young expanding leaves and apices. Methanolic extracts of young expanding leaves were purified by solvent partitioning, PVPP column chromatography and reversed-phase high performance liquid chromatography. Two bioactive regions corresponding to the HPLC retention times of GA1 and GA19 standards were detected in fractions using the recently-developed non-dwarf rice bioassay. Di-deuterated internal standards of GA12, GA53, GA19, GA20, and GA1 were added to similar extracts of shoot apices. The presence of endogenous GA53, GA19, GA20, and GA1 in chrysanthemum apices was confirmed by isotope dilution using gas chromatography-mass spectrometry-selected ion monitoring and Kovats retention indices. In a preliminary quantification study, GA20 and GA1 levels were found to be higher in apices from plants grown under control filters while GA19 levels were higher in apices grown under CuSO4 filters. The possibility that light transmitted through CuSO4 filters alters gibberellin levels in shoot apices is discussed.

Free access

Sonja L. Maki and Nihal C. Rajapakse

Endogenous gibberellins of chrysanthemum [Dendrathema×grandiflorum (Ramat) cv. Bright Golden Anne] were characterized in preparation for quantification of endogenous gibberellins in apices under control and CuSO4 spectral filters. Expanding shoots were separated into young expanding leaves and apices. Methanolic extracts of young expanding leaves were purified by solvent partitioning, PVPP column chromatography, and reversed-phase high performance liquid chromatography. Two bioactive regions corresponding to the HPLC retention times of GA and GA19 standards were detected in fractions using the recently developed non-dwarf rice bioassay. Dideuterated internal standards of GA12, GA53, GA19, GA20, and GA1 were added to similar extracts of shoot apices. The presence of endogenous GA53, GA19, GA20, and GA1 in chrysanthemum apices was confirmed by isotope dilution using gas chromatography–mass spectrometry-selected ion monitoring and Kovats retention indices. Ions for the deuterated internal standard of GA12 were detected, but not for endogenous GA12. The above results demonstrate that the early 13-hydroxylation pathway operates in chrysanthemum.

Free access

V.R. Kambalapally and Nihal C. Rajapakse

The role of light quality on growth, flowering, and postharvest characteristics of `Nellie White' Easter lilies (Lilium longiflorum Thunb.) was evaluated in two growing seasons using 4% CuSO4 and water (control) as spectral filters. The CuSO4 filter significantly reduced plant height and internode length. However, the height reduction was smaller in the 1994—95 season (9%) than in the 1995—96 growing season (32%). The number of days to flower bud appearance and flower opening, and the number and diameter of flowers were not significantly affected by the spectral filters in either season. The CuSO4 filters reduced flower longevity by 3 days in nonstored plants, and by 5 days when plants were subjected to 1 week storage at 4 °C prior to placing in the postharvest room. Results suggest that spectral filters are effective in controlling height and producing compact Easter lily plants without causing a delay in flowering or reducing number of flowers per plant but flower longevity can be adversely affected.

Full access

V.R. Kambalapally and Nihal C. Rajapakse

The role of light quality on growth, flowering, and postharvest characteristics of `Nellie White' Easter lilies (Lilium longiflorum Thunb.) was evaluated in two growing seasons using 4% CuSO4 and water (control) as spectral filters. The CuSO4 filter significantly reduced plant height and internode length. However, the height reduction was smaller in the 1994-95 season (9%) than in the 1995-96 growing season (32%). The number of days to flower bud appearance and flower opening, and the number and diameter of flowers were not significantly affected by the spectral filters in either season. The CuSO4 filters reduced flower longevity by 3 days in nonstored plants, and by 5 days when plants were subjected to 1 week storage at 4 °C prior to placing in the postharvest room. Results suggest that spectral filters are effective in controlling height and producing compact Easter lily plants without causing a delay in flowering or reducing number of flowers per plant but flower longevity can be adversely affected.

Free access

Nihal C. Rajapakse and John W. Kelly

The interactions of light quality and growing season on growth and carbohydrate content of chrysanthemum [Dendranthema × grandiflorum (Ramat.) Kitamura] plants were evaluated using 6% CuSO4 and water (control) as spectral filters. Light transmitted through the CuSO4 filter significantly reduced plant height and internode length compared to control plants regardless of the season. However, the degree of response varied with growing season. Light transmitted through CuSO4 filters delayed flowering. Total number of flowers was not affected by spectral filter, but plants grown under CuSO4 filter had smaller flowers than those grown under the control filter. Light transmitted through CuSO4 filter resulted in reduced leaf and stem soluble sugar (sucrose, glucose, and fructose) and starch concentrations regardless of the growing season. However, the magnitude of reduction was greater in spring- than in fall-grown plants. Stems of fall-grown plants had more starch deposition than spring-grown plants under both filters. Filters with specific spectral characteristics can be used as alternative means of producing compact plants in the greenhouses, however, the delay in flowering and smaller flowers could limit their use for growth control of plants intended for flower production.