Search Results

You are looking at 1 - 10 of 701 items for :

  • "soil type" x
Clear All
Free access

Genhua Niu, Denise S. Rodriguez, Rosa Cabrera, John Jifon, Daniel Leskovar and Kevin Crosby

quantify 1) the effect of salinity of irrigation water and soil type on seedling emergence in two soil types; and 2) the relative tolerance of four commercial pepper varieties belonging to four botanical types, New Mexico long green, jalapeño, cayenne, and

Free access

Jonas Christensen, Uffe Bjerre Lauridsen, Christian Andreasen and Henrik Lütken

the highest dry mass at shingle-dominated soils and no response to fertilizer. The plant growth response has not been studied and the growth of sea kale in less sandy soil types is apparently unknown. The objective of this study was to examine the

Free access

N.K. Lownds and W.A. Mackay

Water loss of Nerium oleander growing in two soil types was determined from mid-June through mid-October. Plants (1 year old, 3.8 liter) were obtained from a local nursery and transplanted in May into 18.9-liter Iysimeter pots containing either clay loam or bluepoint sand. Controls were lysimeter pots containing each soil type but without plants. Irrigation was applied at two rates, approximately field (pot) capacity and 50% of that amount. Irrigation frequency was determined by visual inspection of the plants and was held constant for both irrigation rates in a given soil type. Frequency ranged from 2 to 3 days for the sand and 2 to 5 days for the clay loam. Water loss was determined every 24 h. Plant water loss was higher at the higher irrigation rate. Decreasing irrigation rate by 50% resulted in a 20% to 40% reduction in plant water use in clay loam and a 15% to 30% reduction in sand without affecting plant quality. Plant water loss in the sandy soil was ≈50% greater than in clay loam 48 h after irrigation. Implications of these findings in developing an optimum irrigation model for landscape plants will be considered.

Free access

R. Thomas Fernandez, Ronald L. Perry and David C. Ferree

Root distribution of `Starkspur Supreme Delicious' on nine apple (Malus domestics Borkh.) rootstock grown in two different soil types in the 1980 NC-140 Uniform Apple Regional Rootstock Trial (Michigan and Ohio sites) was determined using the trench profile method. Based on the number of roots counted per tree, rootstock could be separated into five groups for the Marlette soil from most to least: MAC.24 > OAR1 > M.26EMLA = M.9EMLA > M.7EMLA = 0.3 = M.9 = MAC.9 > M.27EMLA. For the Canfield soil, rootstock were ranked for number of roots counted from most to least as follows: MAC.24 > OAR 1. MAC.9 = M.7EMLA > M.26EMLA = O.3 = M.9 EMLA = M.9. Root distribution pattern by depth was affected by soil type with roots fairly well distributed throughout the Marlette soil but restricted primarily above the fragipan in the Canfield soil. Two rootstock performed differently from others in adapting to soil conditions at the different sites. MAC.9 had the second lowest number of total roots/dm2 in the Marlette soil yet the second most in the Canfield soil, while the opposite was found for M.9EMLA. Regression analysis demonstrated positive correlations between number of roots counted and vigor and yield of the scion.

Free access

Nathan Shoaf, Lori Hoagland and Daniel S. Egel

compared across soils, root length was lower in the pasteurized treatment relative to the control. Shoot length was also influenced by soil type with the greatest length in the Ayrshire and Conotton soil, intermediate in the Ayrshire and Zipp, and lowest in

Free access

Kevin R. Kosola and Beth Ann A. Workmaster

Phytol. 86 365 371 Stribley, D.P. Read, D.J. Hunt, R. 1975 The biology of mycorrhiza in the Ericaceae. V. The effects of mycorrhizal infection, soil type and partial soil-sterilization (by gamma

Full access

Kimberly A. Moore, Amy L. Shober, Gitta Hasing, Christine Wiese and Nancy G. West

-holding capacities of these soils as well as the environmental benefits of changes in fertilizer application methods based on soil type and the economic benefit of using different N rates based on soil type. Units Literature cited Alsup, C.M. Trewatha, P.B. 2006

Free access

Gene E. Lester and Kevin M. Crosby

Two important chemicals and an essential mineral (phytonutrients) for human health and well-being are ascorbic acid, 5-methyl-tetrahydrofolic acid (folic acid) and potassium. The influence of cultivar, fruit size, soil type and year on these compounds in [Cucumis melo L. (Inodorous Group)] was determined. Fully mature (abscised) commercial size fruit: 4, 5, 6, 8, and 9 (fruit/0.031 m3 shipping box) from three commercial cultivars: Mega Brew, Morning Ice, and TAM Dew Improved (TDI); and one experimental hybrid `TDI' × `Green Ice' were grown on both clay loam and sandy loam soils. Total ascorbic acid and folic acid content increased with an increase in fruit size up to a maximum (size 6 or 5), then decreased with further fruit size increase. Total ascorbic acid and folic acid content for most fruit sizes were higher when grown on clay loam versus sandy loam soils. The experimental hybrid compared to the commercial cultivars contained generally higher total ascorbic acid levels and significantly higher folic acid levels regardless of fruit size or soil type. Free ascorbic acid and dehydroascorbic acid contents were generally higher from clay loam versus sandy loam soils and in the experimental line versus the commercial cultivars. However, free ascorbic acid content was high in small fruit and remained unchanged with an increase in fruit size until size 6 or 5 then significantly decreased; while dehydroascorbic acid content linearly increased with an increase in fruit size. Potassium content averaged 1.7 mg·g-1 fresh weight for each line and did not significantly differ due to fruit size, but did for soil type and year. Analyses of variance for the phytonutrients assayed demonstrated that cultivar (genetics) always was very highly significant (P = 0.001), whereas, soil and year (environment) were not.

Free access

B.K. Hamilton and L.M. Pike

A field study was conducted on TG1015Y onions (Allium cepa L.) grown in the Lower Rio Grande Valley of Texas. Treatments included two soil types (clay & loam), four harvest dates throughout the bulbing process, and two S rates [0 kg S/ha (standard) & 22.4 kg S/ha (high)]. Laboratory analysis included pyruvic acid concentration for pungency measurement, percent dry matter, and sucrose, glucose, and fructose concentrations. Harvest date influenced all variables tested. Percent dry matter generally decreased as bulbs matured (8.0 to 6.9% DM) with a slight increase at maturity (7.4% DM). Enzymatically developed pyruvic acid concentrations ranged from 3.13 to 4.03 μmole/g fresh wt. There was an upward trend of pyruvic acid over the bulbing process. Total sugars, measured by HPLC methods, tended to increase during bulb development (39.3 to 46.5 mg/g fresh wt.). However, sucrose decreased during the last two harvests causing a corresponding increase in glucose and fructose. The S treatment had no effect on any of the factors measured. The only influence by soil type was sugar concentration, with the loam field being higher in glucose.

Full access

B.D. McCraw and M.W. Smith

Taproots of 2-year-old `Apache' seedling pecan [Carya illinoensis (Wang)] trees were pruned to 1 ft (30 cm), 2 ft (60 cm), or 3 ft (90 cm) in combination with wounding treatments consisting of no wounding, scraping through pericycle tissue on one or two sides of the taproot, or longitudinally splitting the taproot for about half its length. The trees were planted in a Port silt loam soil and a Teller sandy loam soil and grown without irrigation. At the end of the first and second growing seasons, top growth was measured, trees were dug and root system regrowth was evaluated. Tree root weight and number of roots per tree decreased with increasing taproot length.