Search Results

You are looking at 1 - 10 of 20 items for :

  • "soil sterilization" x
Clear All
Free access

M. I. Ragab and Kh. A. Okasha

The objective of thus work was to study the effect of soil fumigation with methyl bromide and different mulching types on growth and productivity of the strawberry cultivar Chandler. The experiment Included 8 Treatments which were the combination of 2 soil fumigation treatments × 4 mulching polyethylene types A split plot design with four replicates was adopted Soil fumigation treatments (fumigated and non fumigated) were assigned as main plots, whereas the four mulching polyethylene treatment (control, black, white and transparent) were distributed as subplots.

Results Indicated that in order to improve the vegetable growth and to increase the high yielding ability of strawberry cv. Chandler, it is recommended to fumigate soil with methyl bromide gas (50 gm/m2) and apply transparent polyethylene soil mulching

Moreover, in strawberry fields where weeds show serious problem. it is better to use the black polyethylene in controlling weeds of both the fumigated and non fumigated soils.

Free access

Bruce E. Branham, Glenn A. Hardebeck, Joseph W. Meyer and Zachary J. Reicher

Annual bluegrass (Poa annua L.) is an invasive weed producing copious amounts of viable seed that compete with seedling turfgrasses during renovation. These field studies were conducted to determine the effectiveness of dazomet (tetrahydro-3,5-dimethyl-2H-1,3,5-thiadiazine-2-thione), a granular soil sterilant that breaks down in soil to release methyl isothiocyanate (MITC), for controlling the soil seed bank of annual bluegrass during turfgrass renovation. Field trials in Urbana, Ill., and West Lafayette, Ind., in Spring and Fall 2000 and 2001 evaluated dazomet rate from 0 to 504 kg·ha-1 and soil preparation techniques to determine the most effective practices to reduce annual bluegrass reestablishment into a creeping bentgrass (Agrostis stolonifera L.) seeding. The interval, in days, between dazomet application and creeping bentgrass planting was also examined to determine the optimal seeding time as measured by the level of annual bluegrass reestablishment. Spring trials generally gave poor results that were attributed to windy conditions resulting in rapid loss of MITC. The annual bluegrass soil seed bank was reduced 46% in spring trials compared to 78% in fall trials. Increasing dazomet rates reduced the absolute number of viable annual bluegrass seeds remaining in the soil. However, significant quantities of viable seed remained, regardless of dazomet rate. Annual bluegrass infested the renovated turf in all trials to varying degrees. Dazomet rates of 420 or 504 kg·ha-1 yielded the lowest rates of annual bluegrass reestablishment. Trials conducted in the fall at these rates resulted in annual bluegrass cover of 1% to 20% in the resulting turf. Creeping bentgrass planted at 1 day after dazomet application had significantly less annual bluegrass than when seeded at 7 or 9 days after dazomet application. Dazomet is a tool that can help reestablish a new turf with lower levels of annual bluegrass. However, eradication of annual bluegrass with dazomet is not likely and environmental conditions will dramatically affect the success of the sterilization.

Free access

Amaya Atucha and Greg Litus

symptoms, it is probably not the main cause of the RD at our study site, as demonstrated by the positive effect of soil sterilization on peach rootstock growth and biomass production ( Figs. 1 – 3 ). Yang et al. (2012) identified an extensive list of root

Free access

Charles H. Peacock and Paul F. Daniel

Initial release of N from waste materials used as natural organic N carriers for turfgrass may be slow due to the need for microbial degradation. In a greenhouse study, `Rebel' tall fescue (Festucau arundinacea Schreb.) and `Tifway' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] growth response to a natural organic fertilizer (Turf Restore) amended or not amended with a soil-derived microbiological inoculum were compared with soluble urea using sterilized and nonsterilized soil. No interactions of soil sterilization and fertilizers were noted at 19 days after treatment (DAT). Urea fertilizer increased tall fescue growth rates by 68% in the nonsterilized soil and 126% in the sterilized soil compared to rates for turf grown with inoculated Turf Restore. Nitrogen uptake rate was 419% higher with urea-fertilized turf in the sterilized soil than for turf fertilized with inoculated Turf Restore. Soil sterilization at 33 DAT no longer affected turf response, but turf growth rate was 133% higher and N uptake 353% higher with urea fertilization than with inoculated Turf Restore. Infection of the plants with Rhizoctonia spp. at 72 DAT was unaffected by fertilizer treatments. Bermudagrass response was similar to that of tall fescue. Growth rate was 67% and N uptake 51% higher with urea than with Turf Restore through 17 DAT, regardless of inoculant addition. Amendment of the natural organic fertilizer Turf Restore with a soil-derived biological inoculant did not enhance turf growth rate or N uptake nor impact infection with Rhizoctonia spp.

Free access

Shann Tanner, Christina Wells and Gregory Reighard

The effectiveness of soil solarization as an alternative to methyl bromide (MBr) fumigation in replanted peach orchards was investigated at the Musser Fruit Research Farm near Clemson, S.C. A split plot experimental design was used, with soil treatment as the whole-plot factor and rootstock as the sub-plot factor. In Spring 2002, preexisting trees were removed from the study site, and six orchard rows were cultivated and subsoiled. In June, two rows were covered with clear polyethylene sheeting and solarized for the remainder of the summer. In November, two additional rows were treated with MBr (474.3 kg·ha-1), while the two remaining control rows received no soil sterilization treatment. In Jan. 2003, 36 `Redglobe' peach trees budded on Guardian™ or Lovell rootstock were transplanted to the site, and one minirhizotron was installed beneath each tree. Minirhizotron observations were made every 14–21 days from Feb. through Oct. 2003, and stem caliper measurements were taken on four dates during this interval. Trees grew significantly larger in the MBr and solarized rows than in the control rows (P< 0.1; Tukey's hsd), but there were no differences in stem caliper growth between MBr and solarization-treated trees. Reduced aboveground growth in control trees may have been related to greater carbon expenditure belowground: in the absence of soil sterilization, fine root median life spans were reduced by 27–28 days (P< 0.0001; proportional hazards regression) and rates of root production and mortality were significantly higher (P< 0.1; repeated measures ANOVA). Solarization and MBr fumigation appeared to provide similar benefits in reducing root turnover and improving aboveground growth at this site.

Free access

W. Voogt

In the Netherlands, many crops in protected cultivation changed from soil to soilless culture in recent years. The reasons for this development were problems with soil sterilization and better growth control with soilless culture, which led to considerable yield increases. However, the growing systems used, with free leachate drainage, contribute highly to pollution of the ground and surface water with minerals (N and P). To reduce this emission, closed growing systems were developed, i.e., systems with recirculating nutrient solutions. Inherent to these systems, however, were problems such as the rapid spread of pathogens in the root environment. Methods were developed for disinfestation of the nutrient solution. Salt accumulation was also a concern, the concentrations of ions in the water used for closed systems must be lower than the uptake capacity of the plants. To avoid depletion and accumulation of certain nutrients. the addition of nutrients should be adapted to the demand during the cropping period. For this purpose, nutrient solutions and guidelines for adjustments during the cropping period were developed for several crops.

Free access

Christina L. Pierson, Carl E. Sams, Dennis E. Deyton and Craig S. Charron

Biofumigation is an alternative to traditional methods of soil sterilization such as methyl bromide. Biofumigation utilizes volatile, pesticidal compounds in soil incorporated plant material from various Brassica species. Three experiments were conducted to study the degradation of allyl isothiocyanate (AITC) generated from the breakdown of glucosinolates present in Oriental mustard (Brassica juncea L. Czerniak). Mustard seed meal was incorporated into a sandy clay loam soil in all experiments. In the first experiment, samples were hydrated and then held in an incubator at 20 ± 0.2 °C. Samples were taken periodically for 7 days or until AITC was not detectable. For the second experiment, hydrated samples were removed from the incubator after 4 hours and 5 mL of ethyl acetate was added. The samples were then placed in a refrigerator at 4 ± 0.2 °C and samples were taken periodically over 77 days. For the third experiment, samples were taken from a strawberry plot experiment grown in a randomized complete block design. Samples were taken and 5 mL of ethyl acetate was added. Then samples were placed into a cooler until returning to the laboratory. The incubator experiment was repeated and showed that the highest concentration of AITC occurred between 2 and 8 hours after hydration. The storage experiment showed a stable relationship between time and AITC degradation. AITC was still present after 77 days. The strawberry plot experiment showed rapid AITC degradation similar to the incubator experiment. Future research will be done to confirm the effects of temperature and glucosinolate content on the amount of allyl isothiocyanate present.

Free access

Stephen R. King, Angela R. Davis, Wenge Liu and Amnon Levi

controlled by grafting, although the results appear to sometimes be more variable than for fusarium control; combining grafting with other control measures such as soil sterilization can improve reliability ( Ioannou, 2001 ). Eggplant (Solanum melongena L

Free access

Thomas M. Sjulin

soil sterilization has also been an effective treatment in warm environments ( Freeman et al., 2002 ). Consideration must also be given to the separation distance between new plantings and previously infested fields as well as separation from other

Full access

Yun-Im Kang, Hyang Young Joung, Dae Hoe Goo, Youn Jung Choi, Mok Pil Choi, Hye Ryun An, Jae-Young Ko, Kang-Joon Choi, Ki Hwan Lee and Kye Wan Hong

. The bulb mite is a serious pest worldwide and acaricides and horticultural methods have been studied and used to control the pest ( Conijn et al., 1996 ). Ninety-seven respondents mentioned nematodes. Soil sterilization reduces the density of nematodes