Search Results

You are looking at 1 - 10 of 240 items for :

  • "shoot development" x
  • Refine by Access: All x
Clear All
Free access

C. C. Pasian and J. H. Lieth

Temperature affects the rate of rose shoot development. In this study heat units were used to quantify “physiological age”. The objective was to determine whether rose shoots require the same number of heat units to reach various stages regardless of climatic conditions. The dates of occurrence of “bud break” (BB), unfolding of each leaf, “visible flower bud” (VFB), and harvest (H) were observed for 126 shoots of 'Cara Mia' roses growing under 5 different temperature and light regimes. Average air temperature (T) and photosynthetic photon flux density (PPFD) levels were recorded hourly. Heat units, defined as the sum of the difference T-Tb (units: °C hr-1) where Tb is the base temperature, were found to be a suitable for tracking most phases of rose crop development. The duration of the phase from H to BB showed considerable variation and thus could not be predicted this way. The duration from BB to VFB or H could be predicted reasonably well to occur at 5900 ± 670 and 12300 ± 1000 °C hr-1 (Mean ± Std. dev.), respectively, assuming Tb =6 °C. The occurrence of unfolding of each leaf can be predicted similarly. PPFD integrals had no significant effect on any development rates.

Free access

Ockert P.J. Stander, Graham H. Barry, and Paul J.R. Cronjé

et al., 2017 ). The overall inhibition of summer vegetative shoot development in “on” trees appears to be regulated by the presence of fruit and an endogenous regulator other than carbohydrates ( Malik et al., 2015 ; Verreynne, 2005 ; Verreynne and

Free access

Gary J. Keever and William J. Foster

`Redwings' and `Gloria' azaleas (Rhododendron × `Redwings' and `Gloria') were treated with foliar sprays of uniconazole, paclobutrazol, or daminozide to suppress bypass shoot development and promote flower initiation and development. Uniconazole at 5 and 25 mg·liter-1 suppressed bypass shoot development of `Redwings' and `Gloria', respectively. Flowering of `Gloria', but not `Redwings', was delayed slightly with uniconazole sprays up to 25 mg·liter-1 ; with the highest uniconazole concentration, 200 mg·liter-1, flowering was delayed as much as 18 days. Flower count of `Gloria' was not affected by lower concentrations of uniconazole, but it was greatly reduced in both cultivars with concentrations above 75 mg·liter-1. Uniconazole was more active than paclobutrazol sprays of similar concentrations or than two daminozide sprays of 3000 mg·liter–1 . Chemical names used: (E)-1-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol (uniconazole); (2RS,3RS)-1-(4-chlorophenyl)-2-(1,1-dimethylethyl)-(1H-1,2,4,-triazol-l-yl-)pentan-3-ol (paclobutrazol); butanedioic acid mono(2,2-dimethylhydrazide (daminozide),

Free access

J.G. Williamson, D.C. Coston, and J.A. Cornell

Planting treatments were evaluated for their influence on shoot development and root distribution of own-rooted `Redhaven' peach [Prunus persica (L.) Batsch] trees planted to high density (5000 trees/ha). Planting in fabric-lined trenches (FLT) or narrow herbicide strips (NHS) reduced the diameter and length of primary shoots, the number and combined length of second-order shoots, and the total length of shoots. Flower density, the number of flowers per node, and the percentage of nodes containing one or more flowers were increased for FLT trees but not for NHS trees when compared with controls. The length of primary shoots increased quadratically for all treatments with increasing limb cross-sectional area (LCA). The total length of shoots increased more with increasing LCA for controls than for FLT trees. The number of flowers per shoot increased linearly for all treatments with increasing LCA values. Root concentration decreased with increasing soil depth and distance from tree rows for all treatments. Reduced widths of weed-free herbicide strips had little effect on root distribution. Roots of FLT trees were reduced in number and restricted vertically and laterally when compared with other planting treatments. The FLT treatment modified shoot development by reducing the length of total shoots and length of primary shoots across LCA values measured when compared with NHS and control-treatments.

Free access

Brian K. Maynard and Nina L. Bassuk

New shoot growth of Carpinus betulus L. fastigiata was subjected to stock plant etiolation and stem banding (a 2.5-cm square of Velcro applied to the shoot base) treatments and sampled for histological study at intervals over a 16-week period of shoot development following etiolation. Effects of partial shading on histology of the stem were also investigated. Numerous histological changes were noted with stem development and stock plant treatment. Among these were a reduction in lignification of the secondary xylem and thickness of the periderm, and an increase in the percentage of sclereid-free gaps in the perivascular sclerenchyma with etiolation. Concomitant propagation studies revealed significant etiolation, shading, and banding effects on rooting percentages and root numbers. Rooting capacity was modelled using linear combinations of the widths of nonlignified secondary xylem, cortical parenchyma and periderm, as well as the percentage of gaps in the sclerenchymatic sheath remaining free of sclereids. It is proposed that the development of sclereids in potential rooting sites reduces rooting potential. The exclusion of light during initial shoot development retards sclereid development by up to 3 months following treatment, which correlates well with observed increases in the rooting potential of etiolated stems.

Free access

Logan S. Logendra, Thomas J. Gianfagna, and Harry W. Janes

A mixture of C8/C10 fatty acid methyl esters (FAME) when applied directly and exclusively to leaf axils of greenhouse-grown tomato (Lycopersicon esculentum Mill.) significantly inhibited side shoot development. Plants grown in a single cluster production system in winter produced 8.9 side shoots/plant, whereas those treated with C8/C10 FAME 45 days after sowing, produced only 0.7 side shoots/plant. Total pruning weight of the side shoots was reduced from 40.2 g/plant to 1.3 g/plant. Fruit yield increased 14% with C8/C10 FAME treatment and there was an increase in the harvest index from 0.63 to 0.70. For a spring crop, in which average daily irradiance was more than twice that in winter, overall yield increased 70% when compared to the winter crop. As in winter, side shoot number and side shoot weight/plant were significantly reduced by C8/C10 FAME, but there was no difference in crop yield between C8/C10 FAME and untreated plants. In both winter and spring, untreated plants required hand pruning three times during the production period, whereas C8/C10 FAME-treated plants were pruned only once at the time of application. A C8/C10 free fatty acid (FA) mixture was also applied to one and two-cluster plants with similar results. In the multiple cluster system, application of the C8/C10 FA mixture instead of side shoot pruning reduced plant height and increased yield from 6.4 to 7.4 kg/plant. C8/C10 FA or C8/C10 FAME treatment could be a useful labor saving strategy in greenhouse tomato production and may increase crop yield under conditions in which assimilates may be limited by environmental factors, or as a result of a high level of competition from other fruits or shoots.

Full access

Steven McArtney and John D. Obermiller

apply GA 3 to scoring or nicking cuts in the bark ( Elfving et al., 2011 ). The objectives of the present research were to evaluate the potential for notching and 6-BA treatments to stimulate shoot development from paradormant buds on blind wood on the

Free access

Susanna Marchi, Luca Sebastiani, Riccardo Gucci, and Roberto Tognetti

Net photosynthesis, dark respiration, chlorophyll and carbohydrate content, and leaf and shoot growth of deciduous peach [Prunus persica (L.) Batsch] saplings, grown in greenhouse conditions, were measured to assess changes in carbon balance during leaf development. The 6th, 12th, and 16th leaf node were measured from the first flush at the base through expansion to maturity (the first node being the oldest). Shoot and leaves expanded following a sigmoid pattern in all nodes. The shape of the logistic curve did not vary between the 6th and the 16th leaf node, while the 12th leaf node showed a steeper response, suggesting that the latter reached 50% expansion relatively earlier. Photosynthesis varied with leaf development as young leaves had low CO2 assimilation rates that were reflected in their chlorophyll concentration. Net daily CO2 assimilation was negative in young expanding leaves. The sink-source transition, defined to be the time when the increase in daily carbohydrate exchange rate exceeded the daily increase in leaf carbohydrate content, occurred before full leaf expansion. The transition from import to export was attained 11-12 days after budbreak (corresponding to 41% to 45% of full leaf expansion) for the 6th leaf, about 7-9 days after (38% to 52% of full expansion) for the 12th leaf and after 9-10 days (32% to 38% of full expansion) for the 16th leaf. Below 30% to 50% of full expansion leaves might not respond to assimilate requirements from sinks, being sinks themselves.

Free access

Susanna Marchi, Luca Sebastiani, Riccardo Gucci, and Roberto Tognetti

Net photosynthesis, dark respiration, chlorophyll and carbohydrate content, and leaf and shoot growth in plants of evergreen olive (Olea europaea L.) grown under controlled conditions were measured to assess changes in carbon balance during leaf development of the 6th, 12th, and 16th node (from the base, first flush) through expansion to maturity. Shoot and leaves expanded in a sigmoid pattern with differences among nodes. Photosynthesis varied with leaf development; young leaves had low CO2 assimilation rates that were reflected in their chlorophyll concentration. Net daily CO2 assimilation was negative in young expanding leaves. The sink-source transition, defined to be the time when the increase in daily carbohydrate exchange rate exceeds the daily increase in leaf carbohydrate content, occurred before full leaf expansion, between 10% and 30% expansion depending on the node.

Free access

K.S. Yourstone and D.H. Wallace

This study was undertaken to determine whether plastochron index (PI), a mathematical construct that quantifies shoot development, can be applied to indeterminate bean (Phaseolus vulgaris L.) genotypes. Length measurements of the middle trifoliate leaflet were the basis of the PI calculation. The expansion of each middle trifoliate leaflet at every node on each plant tested was measured over time to determine whether the growth pattern of each leaflet fits the assumptions of the PI construct. Plants from five indeterminate bean genotypes were grown in two controlled environments: A constant 29C with 12-hr of daylength, and a constant 23C with 12-hr daylength extended to 14 hr with low light intensity. Early leaflet expansion was exponential for all five genotypes in both environments. Expansion rates of successive leaflets were also similar, although a few leaflets in three of the 10 genotype-environment combinations differed in their rates of expansion. Exponential and equal rates of expansion validate the calculation of the fractional component of the PI. In both environments, all genotypes exhibited an increasing rate of leaf initiation with time, which precludes the use of a simple linear slope in estimating rate of development.