Search Results

You are looking at 1 - 10 of 44 items for :

  • "sensory perception" x
  • Refine by Access: All x
Clear All
Free access

Mauricio Canoles, Marisol Soto, and Randolph Beaudry

The aldehydes cis-3-hexenal, hexanal, and trans-2-hexenal; the alcohols 1-hexanol, and cis-3-hexenol; and the ketone 1-penten-3-one are produced as a consequence of lipid degradation following tissue disruption and are among the most important volatile compounds in tomato (Lycopersicon esculentum Mill.) aroma. The biosynthesis of cis-3-hexenal and other volatiles noted involves the action of a sequence of enzymes including lipase, lipoxygenase (LOX), hydroperoxide lyase (HPL), isomerase, and alcohol dehydrogenase (ADH) on glycerolipids containing the fatty acids, linoleic acid (18:2) and linolenic acid (18:3), via the LOX pathway. In the current work, the formation and sensory perception of volatile compounds was studied in tomato plant lines where HPL activity was genetically altered. LeHPL co-suppression dramatically reduced the production of lipid-derived C6-volatiles in leaves, but in fruits, only unsaturated C6-volatile production was affected, suggesting LeHPL-independent formation of hexanal occurs in fruits, but not in leaves. Increased production of 5-carbon volatiles is proposed as an alternative way to metabolize 13-hydroperoxy linolenic acid in plants with reduced LeHPL activity. Changes in the volatile profile of leaves and fruits of tomato lines in which LeHPL activity is reduced markedly are readily detected by nontrained sensory panels. The studies demonstrate that a marked reduction in the activity of one of the most critical steps in the LOX pathway can markedly impact sensory perception. Efforts to improve total volatile formation may require the modification of LOX pathway at several steps simultaneously, including precursor formation, and LOX and HPL activities.

Free access

Mauricio A. Cañoles, Randolph M. Beaudry, Chuanyou Li, and Gregg Howe

Six-carbon aldehydes and alcohols formed by tomato (Lycopersicon esculentum Mill.) leaf and fruit tissue following disruption are believed to be derived from the degradation of lipids and free fatty acids. Collectively, these C-6 volatiles comprise some of the most important aroma impact compounds. If fatty acids are the primary source of tomato volatiles, then an alteration in the fatty acid composition such as that caused by a mutation in the chloroplastic omega-3-fatty acid desaturase (ω-3 FAD), referred to as LeFAD7, found in the mutant line of `Castlemart' termed Lefad7, would be reflected in the volatile profile of disrupted leaf and fruit tissue. Leaves and fruit of the Lefad7 mutant had ≈10% to 15% of the linolenic acid (18:3) levels and about 1.5- to 3-fold higher linoleic acid (18:2) levels found in the parent line. Production of unsaturated C-6 aldehydes Z-3-hexenal, Z-3-hexenol, and E-2-hexenal and the alcohol Z-3-hexenol derived from 18:3 was markedly reduced in disrupted leaf and fruit tissue of the Lefad7 mutant line. Conversely, the production of the saturated C-6 aldehyde hexanal and its alcohol, hexanol, were markedly higher in the mutant line. The shift in the volatile profile brought about by the loss of chloroplastic FAD activity in the Lefad7 line was detected by sensory panels at high significance levels (P < 0.0005) and detrimentally affected fruit sensory quality. The ratios and amounts of C-6 saturated and unsaturated aldehydes and alcohols produced by tomato were dependent on substrate levels, suggesting that practices that alter the content of linoleic and linolenic acids or change their ratios can influence tomato flavor.

Full access

Joseph C. Scheerens

Increasing fruit and vegetable consumption reduces risk factors for cancer, cardiovascular disease and a number of other diet-related chronic diseases. These foodstuffs contain relatively high levels of beneficial phytochemicals (plant-derived, biologically active compounds) among which the preventative activity of antioxidants are most well-known and well-documented. Since small fruit typically contain high levels of antioxidants, increasing their incorporation in the diet is a laudable goal. Media reports of medical studies pertaining to dietary intake and national education initiatives such as the USDA's Food Guide Pyramid and the 5 A Day—for Better Health program have successfully raised public awareness of the health benefits of increased fruit and vegetable consumption, but, as of yet, may not have altered dietary habits. The factors influencing food choice are complex and interrelated. They include: sensory preference, physiological factors (pre- and postingestion), age, gender, lifestyle, behavior, personality, education, income, social attitudes about diet and health, ethnicity and tradition, religious beliefs, social pressures, marketing pressures, available product information and knowledge (labeling, media coverage, etc.) or self-identity beliefs. Some of these factors offer opportunities for increasing fruit and vegetable consumption while others present challenges. With respect to small fruit, food choice factors that tend to increase consumption include public awareness of these products as being beneficial to health and longevity and their image as highly desirable, dessert-like commodities with exquisite flavors. The main factors that deter increased small fruit consumption include their relatively high price per serving and their relative perishability which affects cost, ease of transport and availability. Strategies to capitalize on small fruits' positive attributes and overcome negative attributes with respect to food choice include the application of innovative marketing strategies at all levels and the expansion of research efforts to optimize the health benefits and sensory quality of these products.

Full access

Travis Robert Alexander, Carolyn F. Ross, Emily A. Walsh, and Carol A. Miles

oxidation and polymerization of phenolics, especially in fruit damaged during harvest. Variation in sensory perception due to year of harvest was expected as the previous mechanization studies assessing fruit yield and juice quality characteristics

Free access

Elizabeth A. Baldwin, John W. Scott, and Jinhe Bai

29 genotypes over 6 years, with one to three seasons per year, showed correlations between chemical compounds and sensory perception of sweetness, sourness, and overall tomato flavor ( Table 8 ). Many chemical compounds had significant and positive

Free access

T.M.M. Malundo, E.A. Baldwin, R.L. Shewfelt, H. Sisson, and G.O. Ware

Fruit flavor is a function of sensory perception of taste, aromatic and chemical feeling factor components in the mouth. The specific role of sugars and acids in potentiating flavor perception of volatile compounds and chemical feeling factors is not well known for many fruits. This study was conducted to determine the effects of selected levels of sugars and acids on perception of 3 taste (sweet, sour, bitter), 6 aromatic (banana, grassy, orange peel, peach, pine/turpentine, sweet potato), and 2 chemical feeling factor (astringent, biting) flavor notes in diluted, fresh mango homogenate using a trained descriptive panel. Perception of all flavor descriptors except sour were enhanced by increasing the sugar concentration. An increase in acid concentration enhanced perception of sweet, sour and biting notes while lowering perception of the astringent, peach and pine/turpentine notes. Brix-to-acid ratio (BAR) was found to be an effective chemical indicator for perception of sourness but was not effective for perception of sweetness. These results provide insight into optimum balances of sugars and acids as they influence mango flavor perception specifically in preparation of juice blends, selection of cultivars for specific fresh markets, or determination of optimum ripeness in the marketplace.

Free access

Michael P. Dzakovich, Celina Gómez, Mario G. Ferruzzi, and Cary A. Mitchell

In addition to photosynthesis, light is a critical mediator of secondary metabolism in plants, signaling the production of potentially health-promoting phytochemicals and regulating the emission of volatile organic compounds (VOCs) that can alter the sensory perception of a tomato. Light-emitting diodes (LEDs) are a viable way to test the effects of individual wavebands of light and are being quickly adopted by the greenhouse tomato industry. However, studies characterizing the effects of specific wavelengths of light or supplemental lighting on phytochemical content in general are lacking. We hypothesized that enriching the amount of supplemental blue and/or red light that tomatoes receive would positively affect the amount of carotenoids and phenolic compounds that accumulate in tomato fruits through cryptochrome and/or phytochrome-dependent signaling pathways. To test this hypothesis, we compared the chemical and sensory characteristics of tomatoes grown with overhead high-pressure sodium (OH-HPS) lamps to those grown with intracanopy (IC)-LEDs emitting different ratios of red, blue, and far red light. Tomatoes were profiled for total soluble solids, titratable acidity, ascorbic acid content, pH, total phenolics, and prominent flavonoids and carotenoids. Our studies indicated that greenhouse tomato fruit quality was only marginally affected by supplemental light treatments. Moreover, consumer sensory panel data indicated that tomatoes grown under different lighting treatments were comparable across the lighting treatments tested. Our research suggests that the dynamic light environment inherent to greenhouse production systems may nullify the effects of wavelengths of light used in our studies on specific aspects of fruit secondary metabolism.

Free access

S.R. Drake, T.A. Eisele, M.A. Drake, D.C. Elfving, S.L. Drake, and D.B. Visser

This study was conducted over three crop seasons using 'Delicious' (Scarletspur strain) apple trees on MM.111 rootstock. The bioregulators aminoethoxyvinylglycine (AVG) and ethephon (ETH) were applied alone or in combinations at various time intervals before harvest. Fruit response to bioregulators was evaluated at harvest and after storage. AVG applied 4 weeks before first harvest retarded starch loss at harvest, retained greater firmness, and reduced internal ethylene concentration and watercore of fruit at harvest and after both regular and controlled atmosphere storage. AVG did not influence peel color (hue values), but the flesh color of treated apples was more green. AVG in all instances tended to reduce the sensory scores for apples and apple juice. In contrast, ETH enhanced starch hydrolysis, flesh color development (green to more yellow), and soluble solids concentration while reducing titratable acidity levels. ETH had no influence on fruit firmness at harvest, but reduced firmness levels after storage in an inverse relationship to the concentration applied. Sensory values for whole apples were not influenced by ETH treatment, but ETH improved sensory preference for apple juice, particularly at early harvest. Applying AVG before ETH enhanced soluble solids and sensory scores for both fruit and juice. Treating with AVG followed by ETH at 150 mg·L–1 permitted the maintenance of satisfactory firmness values (>53.4 N) after long-term storage along with better quality and sensory perceptions. Using specific combinations of both AVG and ETH permitted ETH-mediated improvements in objective and perceived fruit quality to be obtained without the losses in flesh firmness and storability due to uncontrolled ethylene evolution and ripening typically observed when ETH is applied alone preharvest.

Free access

Carlos H. Crisosto, Gayle M. Crisosto, Gemma Echeverria, and Jaume Puy

Cultivar segregation according to their organoleptic perception was attempted by using trained panel data evaluated by principal component analysis in four sources of 24 peach and 27 nectarine cultivars as a part of our program to develop minimum quality indexes. Source significantly affected cultivar ripe soluble solids concentration (RSSC) and ripe titratable acidity (RTA), but it did not significantly affect sensory perception of flavor, sourness and aroma by the trained panel. On two out of 51 cultivars tested, source played a role on sweetness perception. In all of these cases, when source fell out of the proposed cultivar organoleptic group it could be explained by fruit being harvested outside the commercial physiological maturity (immature or overmature). The perception of the four sensory attributes was reduced to three principal components that explain 92% for peach and 94% for nectarine of the variation in the sensory characteristics of the cultivars tested. Season did not affect significantly the classification of three cultivars that were evaluated during these two seasons. By plotting organoleptic characteristics in PC1 and PC2 (∼76%), cultivars were segregated into groups (balanced, robust, sweet, peach or nectarine aroma, and/or peach or nectarine flavor) with similar sensory attributes; nectarines were classified into five groups and peaches into four groups. Based on this information, we recommend that cultivars should be clustered in organoleptic groups and a development of a minimum quality index should be attempted within each organoleptic group rather than proposing a generic minimum quality index based on RSSC. This organoleptic cultivar classification will help to match ethnic preferences and enhance the current promotion and marketing programs.

Free access

Alison L. Reeve, Patricia A. Skinkis, Amanda J. Vance, Katherine R. McLaughlin, Elizabeth Tomasino, Jungmin Lee, and Julie M. Tarara

viticulture measures (yield, pruning weight, and yield to canopy metrics) and fruit composition and wine sensory perception. We hypothesized that a higher LA:Y was required for Oregon ‘Pinot noir’ production than published elsewhere to achieve optimum ripeness