Search Results

You are looking at 1 - 10 of 39 items for :

  • "seeding date" x
  • Refine by Access: All x
Clear All
Full access

Michael T. Deaton and David W. Williams

characteristics among the cultivars tested. Methods that have been accepted as standard (e.g., early June seeding date defined as optimal) may now be called into question for some cultivars seeded in the upper transition zone. Considering the many cultivars

Full access

Anne Marie Johnson and Ted Whitwell

Twenty-nine annual and perennial wildflower species were evaluated for sod development based on ratings for appearance, root mat density, and stability following undercutting and storage and performance after replanting. Species selection was based on the lack of a large taproot, adaptability to the southeastern climate, flowering period, and potential for surviving root undercutting. Species were seeded in fall and spring, and leaf area and root mass samples were compared. Wildflower sod was undercut at a 5 cm (2 in) depth in March (fall-seeded plots) and May (spring-seeded plots) and then stored on clear plastic for 7 weeks and replanted. Fall-planted species had a higher survival rate than spring-planted species. Species selected for sod development were Achillea millefolium L., Chrysanthemum leucanthemum L., Coreopsis lanceolata L., Coreopsis tinctoria Nutt., Gaillardia aristata Foug., Monarda citriodora Cerv. ex Lag., Rudbeckia hirta L., and Verbena tenuisecta Briq. To reduce damage to aerial growth during harvesting, paclobutrazol, daminozide, and uniconazole were tested on eight greenhouse-grown wildflower species. Uniconazole had limited growth control over Rudbeckia hirta, Monarda citriodora, Coreopsis lanceolata, and Coreopsis tinctoria.

Free access

Luqi Li, Matthew D. Sousek, Keenan L. Amundsen, and Zachary J. Reicher

determine how seeding rate affects establishment of ‘Sundancer’ buffalograss when dormant or spring-seeded. Our second objective was to determine if cultivar or seeding date affects establishment of the recently developed ‘Cody’, ‘Bowie’, or ‘Sundancer

Open access

Carol A. Miles, Thomas S. Collins, Yao Mu, and Travis Robert Alexander

herbicide to control a severe weed issue. The first study was a cultivar trial and the second study tested the seeding date and planting method. The first study included 13 bulb fennel cultivars (all bulb fennel cultivars offered for sale in the United

Free access

J. Scott McElroy and Greg K. Breeden

trials over a 3-year period, whereas the timing study was conducted as four separate trials over a 2-year period. Seeding dates, soil types, and cultivars used are presented in Table 1 . The seeding date for Fall 2005 was delayed as a result of

Free access

John C. Stier, Eric J. Koeritz, and Mark Garrison

quality of any seeding date until late summer, although PRG was much less affected than KBG-dominated mixtures ( Table 2 ). Likewise, spring seedings of 100% PRG provided high-quality turf by June of each year, whereas KBG-dominated mixtures took 1 (2005

Free access

Zachary J. Reicher, Clark S. Throssell, and Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turfgrasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.

Full access

Zachary J. Reicher, Clark S. Throssell, and Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turf-grasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.

Free access

M.M. Gaye and A.R. Maurer

Field studies were conducted to determine the effects of row covers (no row cover or Agryl P-17), seeding date, and seeding method (seeding in a furrow or into a smooth soil surface) on the development, harvest date, and yield of brussels sprouts [Brassica oleracea L. (Gemmifera Group)] grown in southwestern British Columbia. The treatments were applied to the plants in the seedbed after which the plants were transplanted in the field and grown to horticultural maturity. In both years, row covers increased soil temperatures and advanced seedling development and transplanting dates compared with uncovered treatments. Leaf weight ratio (LWR) decreased, specific leaf area (SLA) increased, and leaf area ratio (LAR) was unaffected by the application of row covers. Early seeding also promoted early transplanting. In 1987, plots were harvested when plants reached horticultural maturity. There was a linear effect of seeding date on harvest date, early seeding promoted an early harvest, and row covers advanced the sprout harvest of plants seeded earliest (24 Mar). In 1988 all treatments were harvested from 17 to 19 Oct. and marketable yield was improved by early seeding and by row covers. Seeding method did not influence plant growth or yield.

Free access

Annamarie Pennucci

Five species and 27 cultivars of fine-leaved fescues (Festuca sp.) were evaluated for low-maintenance utility turf in a variety of golf course conditions. Cultivar selection and management techniques varied across six sites in 4 years. Germination, tillering, rapidity of establishment, turf density, and general turfgrass quality were significantly different between both species and cultivars. Annual and seasonal decline and recovery of turf quality was also dependent on both species and cultivar. Greater differences exist within cultivars in some species than between species. Aspect, slope, soil disturbance, shade, seeding date, irrigation, fertility regime, mulch, and mowing influenced establishment and seedling development. Absence of endophytic fungi and development of diseases, insects, weeds, and post-germination disturbance markedly contributed to losses in turf quality, percent living cover, and increased erosion potential. Success and duration of fescue slope plantings are both positively and negatively correlated to various site characteristics and management techniques. Fescues are an appropriate choice in specific circumstances.