Search Results

You are looking at 1 - 4 of 4 items for :

  • "season extending technology" x
  • Refine by Access: All x
Clear All
Full access

William J. Lamont Jr., Martin R. McGann, Michael D. Orzolek, Nymbura Mbugua, Bruce Dye, and Dayton Reese

Plasticulture technology, especially high tunnels for extending the production period of a wide variety of horticultural crops, is an accepted production practice worldwide. In particular, high tunnels offer a production system that minimizes the effect of the environment on crop production and allows growers to continue to farm in densely populated areas. Only recently has the use of high tunnels in the U.S. been investigated and this research has been centered in the northeastern U.S. In 1999 the High Tunnel Research and Education Facility was established at Pennsylvania State University that resulted in the development of a unique high tunnel design. A detailed description of the new design and construction is presented in this report.

Full access

William J. Lamont Jr., Michael D. Orzolek, E. Jay Holcomb, Kathy Demchak, Eric Burkhart, Lisa White, and Bruce Dye

At the Pennsylvania State University (Penn State) High Tunnel Research and Education Facility, a system of production of high-value horticultural crops in high tunnels has been developed that uses plastic mulch and drip irrigation. The Penn State system involves small-scale, plastic-application equipment that prepares and applies plastic mulch and drip-irrigation tape to individual raised beds. It differs from the production system developed by researchers at the University of New Hampshire in which drip-irrigation tape is manually applied to the soil surface and then the entire soil surface in the high tunnel is covered with a black plastic sheet. An overview of the production system used in the Penn State high tunnels is presented in this report.

Full access

William James Lamont Jr.

Plasticulture, simply defined, is a system of growing crops wherein a significant benefit is derived from using products derived from plastic polymers. The discovery and development of the polythylene polymer in the late 1930s, and its subsequent introduction in the early 1950s in the form of plastic films, mulches, and drip-irrigation tubing and tape, revolutionized the commercial production of selected vegetable crops and gave rise to plasticulture. The later discovery of other polymers, such as polyvinyl chloride, polyproplene, and polyesters, and their use in pipes, fertigation equipment, filters, fittings and connectors, and row covers further extended the use of plastic components in this production system. The plasticulture system consists of plastic and nonplastic components: plastic mulches, drip irrigation, fertigation/chemigation, fumigation and solarization, windbreaks, stand establishment technology, season-extending technology, pest management, cropping strategies, and marketing.

Full access

Karen L. Panter

management to soil management to the various crops being grown with this season-extending technology. The colloquium objectives were two-fold. The first was to impart applied information on the commercial practices used to produce horticultural crops